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1. Introduction

A homogeneous space is a differentiable manifold M upon which a Lie group acts
transitively. At the foundation of the study of homogeneous spaces is the following
well-known theorem (e.g., Theorem 9.3 in [1], or Theorem 3.62 in [4]):

Theorem 1.1. Let G be a Lie group acting transitively on a manifold M by a
smooth action µ (i.e., M is a homogeneous space). If x is any point in M , then
the mapping F : G/Gx →M defined by F (gH) = µx(g) for all g ∈ G is a smooth
G-equivariant diffeomorphism.

In the above theorem, Gx = {g ∈ G | µ(g, x) = x} is the isotropy subgroup of
G at x ∈ M . This reduces to an algebraic problem, by means of the following
significant theorem ([2] Proposition 3.1):

Theorem 1.2. Let G be a Lie group with connected subgroup H, and let G and
H have Lie algebras g and h, respectively. There is a one-to-one correspondence
between G-invariant Lorentz metrics on G/H, and inner products on g/h that are
adh-invariant (i.e., invariant under the action of h by ad). (We do not require the
inner products to be positive definite.)

In the preceding theorem, ad : g× g→ g is given by the formula

ad(X,Y ) = [X,Y ],

where [·, ·] denotes the Lie bracket on g. (See [4], Section 3.46 and Theorem 3.47
for details.)

By Theorem 1.1, to study homogeneous spaces, it is only necessary to consider
Lie groups and their isotropy subgroups. There are generally many such isotropy
subgroups, but the next theorem limits the number of quotient spaces that need to
be considered.

Theorem 1.3. Let G be a Lie group with closed subgroups H and K. If φ : G→ G
is a smooth group isomorphism such that φ(H) = K, then φ induces a G-equivariant
diffeomorphism φ̃ : G/H → G/K.
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To summarize, in order to find an invariant metric γ on a manifold M it is
enough to find an invariant inner product η on a vector space g/h. In this note, we
will provide a detailed proof of this fact.

2. Review of Manifolds

This section is intended only as a brief review of manifolds and their properties.
For further details see [1].

Definition 2.1. A topological manifold M of dimension n, or n-manifold, is a
topological space such that:

(i) M is Hausdorff,

(ii) M is locally Euclidean of dimension n, and

(iii) M has a countable basis of open sets.

These requirements imply for each point in M , there exists a coordinate chart
(U, φ), where U is an open set in M about the point and φ is a homeomorphism of
U to a subset of Rn.

Definition 2.2. Let M and N be manifolds. A function f : M → N is said
to be smooth if it has continuous partial derivatives of all orders and each such
derivative is independent of the order of differentiation. The set of all smooth real-
valued functions from M to N is denoted by C∞(M,N). In the special case N = R,
this is written simply C∞(M).

Definition 2.3. Two coordinate charts (U, φ) and (V, ψ) are said to C∞-compatible
if both

φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) and ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are diffeomorphisms (i.e. C∞ maps with C∞ inverses).

Definition 2.4. A differentiable or C∞-manifold is a topological manifold M with
a family of coordinate charts U = {(Uα, φα)} (called an atlas) such that

(1) M is covered by {Uα},

(2) for any α and β the charts (Uα, φα) and (Uβ , φβ) are C∞-compatible, and

(3) if a chart (V, ψ) is C∞-compatible with every (Uα, φα) ∈ U , then (V, ψ) is in
U .

In order to study manifolds, it is necessary to define a few concepts.

Definition 2.5. The tangent space TpM to M at p is the set of all mappings
Xp : C∞(M)→ R satisfying for α, β ∈ R and f, g ∈ C∞(M),
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(i) Xp(αf + βg) = α(Xpf) + β(Xpg) (linearity), and

(ii) Xp(f ◦ g) = (Xpf)(g(p)) + f(p)(Xpg) (Leibniz rule).

Any Xp ∈ TpM is called a tangent vector at p in M .

The tangent space at a point p ∈M is a vector space with operations defined as

(Xp + Yp)f = Xpf + Ypf and (αXp)f = α(Xpf),

for Xp, Yp ∈ TpM with f ∈ C∞(M) and α ∈ R.

Definition 2.6. Let M and N be manifolds with F : M → N a smooth function.
For p ∈M the push-forward of F at p is the smooth map

F∗ : TpM → TF (p)N defined by F∗(Xp)f = Xp(f ◦ F ).

If H = G ◦ F , then the chain rule states that H∗ = G∗ ◦ F∗.

For a diffeomorphism of manifolds F : M → N , if ∂
∂x1 |p . . .

∂
∂xn |p is a basis for

TpM and ∂
∂y1 |F (p) . . .

∂
∂yn |F (p) is a basis for TF (p)N then

(F∗)(
∂

∂xi
) =

∂Fα

∂xi
|p

∂

∂yα
. (1)

Definition 2.7. A vector field X on a manifold M is a function assigning to each
p ∈M a vector Xp ∈ TpM such that Xp varies smoothly with respect to p.

In order to make this more precise, it is necessary to give the following important
definition.

Definition 2.8. Let M be a manifold. Then define the tangent bundle to be

TM =
⋃
p∈M

TpM = {(p,Xp) | p ∈M,Xp ∈ TpM}.

The tangent bundle TM is a smooth manifold of dimension 2n and comes equipped
with the projection map π : TM →M where

π(p,Xp) = p.

The set of all C∞-vector fields on a manifold M is labeled X(M).

A vector field then can be defined as a smooth map X : M → TM by X(p) =
(p,Xp), where Xp ∈ TpM , such that (π ◦X)(p) = p.

Definition 2.9. Let M and N be manifolds with F : M → N a smooth map. If
X ∈ X(M) and Y ∈ X(N) then X and Y are said to be F -related if YF (p) = F∗(Xp)
for all p ∈M . This is commonly written Y = F∗(X).
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It can be shown that if F : M → N is a diffeomorphism, then each vector field
X on M is F -related to a uniquely determined vector field Y on N .

Definition 2.10. Let M be a manifold. If F : M → M is a diffeomorphism and
X ∈ X(M) such that F∗(X) = X (i.e X is F -related to itself), then X is invariant
with respect to F or F -invariant.

Definition 2.11. If M is a manifold with p ∈M , then the cotangent space at p in
M is the dual space T ∗pM . The dual space to TpM is the set of all linear mappings
ωp : TpM → R. Any ωp ∈ T ∗pM is called a cotangent vector at p in M .

Given a basis E1p, . . . , Enp of TpM , there is a uniquely determined dual basis
ω1
p, . . . , ω

n
p satisfying ωip(Ejp) = δij .

Definition 2.12. Let M and N be manifolds with F : M → N a smooth function.
For p ∈M the pull-back of F at p is the smooth map

F ∗ : T ∗F (p)N → T ∗pM

defined by
F ∗(ωF (p))(Xp) = ωF (p)(F∗(Xp)).

Definition 2.13. Let M be a manifold. Then define the cotangent bundle to be

T ∗M =
⋃
p∈M

T ∗pM = {(p, ωp) | p ∈M,ωp ∈ T ∗pM}.

Definition 2.14. A one-form ω on a manifold M is a smooth function ω : M →
T ∗M assigning to each p ∈M a cotangent vector ωp ∈ T ∗pM .

The map F∗ does not always map vector fields on M to vector fields on N , but
F ∗ does determine a one-form on M given a one-form on N .

Definition 2.15. If V is a vector space over R, then a bilinear form on V is defined
to be a map Φ : V × V → R that is linear in each variable separately.

Assume the vector space V is n-dimensional. In this case, a basis {e1, . . . , en}
can be chosen for V . For a bilinear form Φ on V , let αij = Φ(ei, ej) for i = 1, . . . , n
and j = 1, . . . , n. These n2 values are called the components of Φ with respect to
the basis {e1, . . . , en} and completely determine the value of Φ (this is assured by
the bilinearity of Φ). A matrix A can be defined to have components Aij = αij ,
establishing a one-to-one correspondence between n×n matrices and bilinear forms
on V with the given basis.

Definition 2.16. Let Φ be a bilinear form on a vector space V . The bilinear form
Φ is symmetric if Φ(v, w) = Φ(w, v). It is skew-symmetric if Φ(v, w) = −Φ(w, v).
In addition, a symmetric bilinear form is called positive definite if Φ(v, v) ≥ 0 and
Φ(v, v) = 0 if and only if v = 0. A positive definite bilinear form on a vector space
V is often called an inner product on V .
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Definition 2.17. Let M be a manifold. A smooth function γ is a field of bilinear
forms on M if it assigns to each point p ∈ M a bilinear form γp on TpM , so that
γp : TpM × TpM → R.

As was the case for one-forms, if F : M → N is a smooth mapping of manifolds
and γ is a field of bilinear forms on N then F ∗γ is a field of bilinear forms on M
defined by the formula

(F ∗γ)(Xp, Yp) = γ(F∗(Xp), F∗(Yp)).

Furthermore, if γ is symmetric then F ∗γ is symmetric; and if the field of symmetric
bilinear forms γ is positive definite and F is an immersion (F ∗ is injective), then
F ∗γ is symmetric and positive definite.

Definition 2.18. Let M be a manifold with a field of symmetric, positive definite
bilinear forms γ. Then M is called a Riemannian manifold and γ a Riemannian
metric.

If a bilinear form is positive definite, then the corresponding matrix has maximal
index. So if the bilinear form γ is on an n-dimensional vector space, then the
corresponding matrix has index n. This is not the only case of interest, however.

Definition 2.19. Let M be an n-dimensional manifold with a field of symmetric
bilinear forms γ. If at each point p ∈ M , the matrix corresponding to the bilinear
form γp on TpM has index n − 1, then M is called a Lorentz manifold and γ a
Lorentz metric.

Definition 2.20. Two Riemannian (Lorentz) manifolds M1 and M2 with Rie-
mannian (Lorentz) metrics γ1 and γ2 are said to be isometric if there exists a
diffeomorphism F : M1 →M2 such that F ∗γ2 = γ1. A map F : M → M is called
an isometry of a metric γ if F ∗γ = γ.

3. Review of Group Actions

The following section discusses action of a group on a set . The group G will
often be a Lie group and the set X will often be a manifold, but the discussion will
be kept arbitrary for now.

Definition 3.1. Let G be a group and X a set. A mapping µ : G×X → X is said
to be a group action on the set if the following two conditions are satisfied:

(1) If e ∈ G is the identity element, then

µ(e, x) = x for all x ∈ X.

(2) If g1, g2 ∈ G, then

µ(g2, µ(g1, x)) = µ(g2g1, x) for all x ∈ X.
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The group G is said to act on the set X by the action µ. For simplicity, µ(g, x)
is often written gx.

The action defined above is actually a left action of a group on a set, so called
because the group element multiplies on the left side of the point. In order to define
a right action, change property (2) as follows:

(2) If g1, g2 ∈ G, then

µ(g2, µ(g1, x)) = µ(g1g2, x) for all x ∈ X.

If G is any group, then µ : G × G → G can be defined for g1, g2 ∈ G by
µ(g1, g2) = g1g2, the group multiplication. This defines an action of the group G
on itself. Closure of the group assures the map is well-defined, condition (1) is
satisfied by the identity axiom, and associativity confirms condition (2).

In many cases it is convenient to think of the action on a set by a fixed element
of a group. Given a group G acting on a set X by an action µ as described above,
if g ∈ G, then define µg : X → X by

µg(x) := µ(g, x) for all x ∈ X.

For any g ∈ G the map µg has an inverse and (µg)−1 = µg−1 . Fix g ∈ G and x ∈ X,
then following from the definition of µg and µg−1 ,

µg−1 ◦ µg(x) = µg−1(µ(g, x)) = µ(g−1, µ(g, x)).

The mapping µ is a group action, so condition (1) may be imposed, giving the
following result:

µ(g−1, µ(g, x)) = µ(g−1g, x) = µ(e, x).

Condition (2) of a group action implies µ(e, x) = x, hence the result:

µg−1 ◦ µg(x) = x.

A similar argument shows µg ◦ µg−1(x) = x and so µg−1 = µg−1 .

In addition, for any x ∈ X, µ can define another map µx : G → X as follows:
for any g ∈ G, µx(g) = µ(g, x).

Definition 3.2. Let a group G act on a set X by µ. The action µ is effective if
µg being the identity implies g = e. In this case, G is said to act on X effectively.

By the group axioms, there exists only one unique identity element in any group
G, so clearly the only element in G which fixes all elements of G with respect to
the group multiplication is the identity. Thus any group acts effectively on itself.
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Definition 3.3. Let a group G act on a set X by µ. Let Ox = {y ∈ X | y =
gx for some g ∈ G}. The set Ox is called the orbit of x in X. If y lies in the orbit
of x, so that y = gx for some g ∈ G, it is sometimes said that x can be moved to y
by g. If Ox = {x}, i.e. gx = x for all g ∈ G, x is called a fixed point of X.

Definition 3.4. Let a group G act on a set X by µ. The action µ is called a
transitive action of G on X if for any x, y ∈ X there exists a g ∈ G such that
y = µ(g, x). In this case, G is said to act transitively on X. If an action is
transitive, any point can be moved to any other point, so the orbits are the entire
set X.

Note that any group G acts transitively on itself. If µ is defined by the group
operation. Then for any g1, g2 ∈ G, there exists g = g2g

−1
1 ∈ G such that g2 =

µ(g, g1). The existence of g = g2g
−1
1 is assured by the group axioms.

Definition 3.5. Let a group G act on a set X by µ. Given x ∈ X, the isotropy of
G at x is defined as

Gx = {g ∈ G | µ(g, x) = x}.

The subgroup Gx is often called the stabilizer of x.

Lemma 3.1. Let G be a group acting on a set X. The isotropy Gx of G at x ∈ X
is a subgroup of G.

Proof. If Gx is to be a subgroup of G, then it must satisfy the axioms of subgroups:

(1) Closure: Let g1, g2 ∈ Gx for some x ∈ X. Then g1x = x and g2x = x. It
follows that

(g1g2)x = g1(g2x) = g1x = x,

so g1g2 ∈ Gx.

(2) Identity: If e ∈ G is the identity element, then by definition of group action,
ex = x, so e ∈ Gx.

(3) Inverses: Let g ∈ Gx, so that gx = x. G is a group so there exists a g−1 ∈ G.
If x = gx, then

g−1x = g−1(gx) = (g−1g)x = x.

Therefore g−1 ∈ Gx.

The three axioms satisfied, Gx is a subgroup. �

The previous definitions for groups and group actions can be applied to the
special case of a Lie group G acting on a manifold M .

Definition 3.6. A group G is a Lie group if G is a manifold and both the group
operation and the mapping of an element to its inverse are C∞:

(1) θ1 : G×G→ G defined by θ1(g1, g2) = g1 · g2 and
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(2) θ2 : G→ G defined by θ2(g) = g−1.

Definition 3.7. Let G be a Lie group and M a manifold. A mapping µ : G×M →
M is said to be a Lie group action on the manifold if µ is smooth (or C∞) and
satisfies the conditions for group action given in Definition 3.1.

If a Lie group G acts on a manifold M by µ for g ∈ G, µg : M →M defined for
x ∈ M by µg(x) = µ(g, x) is a diffeomorphism. It is smooth because group action
is smooth by assumption and it has an inverse which must also be smooth. The
map µx : G → M for any x ∈ M defined by µx(g) = µ(g, x) for all g ∈ G is also
smooth for the same reasons.

Theorem 3.2. If G is a Lie group acting smoothly on a manifold M , then for any
x ∈M the isotropy Gx is a closed subgroup of G.

Proof. It has already been shown that the isotropy is a subgroup. It only remains
to show that Gx is closed as a subset in G. By assumption, G acts on M by a
smooth function, say µ. Consider any x0 ∈M . Now define a map F : G→M by

F (g) = µx0(g) = µ(g, x0)

for all g ∈ G. The map µx0 is smooth so F is smooth also. Next note that

F−1(x0) = {g ∈ G | µx0(g) = x0},
but this is simply Gx0 . The singleton {x0} is closed in M , so by continuity of F ,
Gx0 = F−1(x0) is closed in G. The choice of x0 ∈ G was completely arbitrary, of
course, so Gx is closed in G for any x ∈M . �

In order to reach the main goal of homogeneous spaces, it will be important to
have one more definition from group theory.

Definition 3.8. Let H be a subgroup of a group G. The left coset of g ∈ G with
respect to H is defined as the set gH.

This notion of cosets can be use to define an equivalence relation ∼ as follows:
two elements g, ĝ ∈ G are said to be equivalent, or g ∼ ĝ, if they are in the same
coset, i.e. if gH = ĝH. Another way of saying the same thing is that ĝ ∈ gH; but
this means there exists an h ∈ H such that ĝ = gh. It still remains to be shown,
however, that ∼ satisfies the three axioms of an equivalence relation:

(i) Reflexivity: For all g ∈ G, g ∼ g.

(ii) Symmetry: For all g1, g2 ∈ G, if g1 ∼ g2 then g2 ∼ g1.

(iii) Transitivity: For all g1, g2, g3 ∈ G, if g1 ∼ g2 and g2 ∼ g3, then g1 ∼ g3.

For (i), note that the identity element e in G must be in all subgroups of G, thus
e ∈ H. From the definition of the identity element, if g ∈ G, then g = ge ∈ gH, so
g ∼ g. Now, for g1, g2 ∈ G, if g1 ∼ g2 then g2 ∈ g1H, or g2 = g1h for some h ∈ H.
This implies that g2h−1 = g1. H is a subgroup of G, so if h ∈ H then h−1 ∈ H
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and g1 = g2h
−1 ∈ g2H, and so g2 ∼ g1, satisfying (ii). Finally, if g1, g2, g3 ∈ G

and g1 ∼ g2 and g2 ∼ g3, then there exist h1, h2 ∈ H such that g2 = g1h1 and
g3 = g2h2. Let h3 = h1h2, which by closure is in H. Then

g1h3 = g1(h1h2) = (g1h1)h2 = g2h2 = g3.

Thus there exists h3 ∈ H such that g3 = g1h3, and so g1 ∼ g3, proving (iii).

Definition 3.9. Let H be a subgroup of G. Then G/H, the quotient space of H
in G, is the set of all (left) cosets of G.

Theorem 3.3. Let G be a Lie group with subgroup H. Then G/H is Hausdorff
with the induced quotient topology if H is a closed subspace of G.

Proof. Before G/H can be called Hausdorff, a topology must be given. Given a
group G with subgroup H, the induced quotient topology on G/H is obtained by
defining a set V ∈ G/H to be open in G/H if π−1(V ) is an open set in G, where
π is the quotient projection π : G → G/H defined by the formula π(g) = gH for
g ∈ G. It follows that π is continuous by definition. Additionally, π is an open
map, i.e. if U is open in G, then π(U) is open in G/H. In order to see this, it is
enought to show that for U open in G, π−1(π(U)) is also open in G, but

π−1(π(U)) =
⋃
g∈G

gU,

is open because it is the union of open sets.

Now proceed by defining a subset R ⊂ G×G as follows:

R = {(g1, g2) | g1 ∼ g2}.

Continue by defining a map F : G×G→ G by F (g1, g2) = g−1
2 g1. This map is C∞

because group multiplication is C∞ for a Lie group. It follows that F−1(H) = R.
So by continuity of F , if H is closed in G, then R is closed in G × G. Therefore,
it is sufficient to show that R closed in G × G implies that G/H is Hausdorff.
Assume x, y ∈ G/H are nonidentical. The points x and y are in the quotient space,
thus there exist two elements g1, g2 ∈ G such that x = π(g1) and y = π(g2). By
assumption π(g1) 6= π(g2), so g1 and g2 are not in the same coset; hence g1 6∼ g2
and so (g1, g2) 6∈ R. The complement of R is open, thus there is an open set U ×V
in G × G containing (g1, g2) such that U × V ∩ R = ∅. Translated this means no
elements in U are equivalent to any elements in V , or π(u) 6= π(v) for all u ∈ U and
v ∈ V implying π(U) ∪ π(V ) = ∅. Therefore there exist disjoint sets π(U), π(V ) in
G/H such that x ∈ π(U) and y ∈ π(V ); these sets are open because the quotient
projection is an open map. The quotient G/H is Hausdorff, as required. �

The converse of this theorem is also true, but it is not needed in this paper.

If a group G acts on a set X, then the isotropy subgroup Gx for x ∈ X is a
subgroup of G. Thus G/Gx defines a quotient space. In the case of a Lie group,
the isotropy subgroup Gx in G is closed, so G/Gx is Hausdorff.
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Theorem 3.4. Let G be a Lie group with subgroup H such that H is closed as a
subset of G. Then

1. the quotient space G/H is a manifold of dimension dim(G)− dim(H),

2. the projection map π : G→ G/H is smooth, and

3. there exists a smooth local section σ : G/H → G.

Proof. Recall that given a group G with subgroup H, the induced quotient
topology was defined so that a set V ∈ G/H is open if π−1(V ) is open in G,
where π is the quotient projection defined above. The map π is continuous by
definition, but it should be noted that π−1 is the preimage mapping and not the
inverse function. Indeed, the inverse of π need not exist. There may be more than
one element of the group in the same coset and the preimage would map the image
back to both of these. Locally, however, a smooth function σ : G/H → G can be
defined so that

(π ◦ σ)(x) = x (2)

for any x ∈ G/H. Continuing will require a lemma, given here without proof, which
can be found in [1], pages 169-170.

Lemma 3.5. Let G be an n-dimensional Lie group and H be an m-dimensional
Lie subgroup of G which is closed as a subset. For any ε > 0 there exists a cubi-
cal neighborhood or chart (U, φ) of any g ∈ G such that if (U, φ) on G has local
coordinates x1, . . . , xn then

(i) φ(p) = (0, . . . , 0),

(ii) φ(U) = Cnε (0), and

(iii) φ(U ∩H) = {x ∈ Cnε (0) | xm+1 = · · · = xn = 0}.

Now it can be shown that σ is locally smooth. Given G is a manifold, there exists
at any point an open neighborhood U and a diffeomorphism φ : U → φ(U) ⊆ Rn,
where n is the dimension of the Lie group G. By assumption a Lie subgroup H
has been given, say of dimension m. Then H can be given the manifold structure
described in the preceding lemma. Define a new map φ̃ such that it’s inverse is
φ̃−1 = π ◦ φ−1 |S : S → π(U) where S = φ(U ∪ H). So φ̃ : π(U) → S. Next, if
La : G → G is left translation by some a ∈ G so that La(g) = ag for all g ∈ G,
define L̃a : G/H → G/H to be the induced left translation on G/H defined by

L̃a(gH) = (ag)H

for any g ∈ G. Smoothness of L̃a follows from the smoothness of La. Finally define
σ : G/H → G as

σ = La ◦ φ−1 ◦ φ̃ ◦ L̃a−1 .

Therefore σ is smooth as the composition of smooth functions. Of course, note
that these functions were defined only on neighborhoods, and so σ is defined only
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locally. While σ is not exactly an inverse of π, it will suffice in many cases. For
fuller discussion, see [4], pp. 120-12l.

Now that the section σ has been defined, it can be used to determine a chart on
G/H. Let (U, φ) be a chart on G with local coordinates x1, . . . , xm, xm+1, . . . , xn.
Let

A = { q ∈ U | x1(q) = · · · = xm(q) = 0 }
and define

ψ : A→ Cn−mε (0) by ψ(q) = (xm+1(q), . . . , xn(q)).
By the choice of U , A ∪ H can contain only one point. This also holds for the
intersection of A with each coset of H, so π(A) is open in G/H. Define a chart
on G/H to be (π(A), ψ ◦ σ). This chart is differentiable, hence G/H is a manifold.
Additionally,

ψ ◦ σ : π(A)→ Cn−mε (0)
is a diffeomorphism, so dim(G/H) = n−m = dim(G)− dim(H). �

For a group G with subgroup H, a natural action of the group G can be defined
on the quotient G/H.

Theorem 3.6. Let G be a Lie group with closed subgroup H. If µ : G × G/H →
G/H is defined by

µ(g̃, gH) = (g̃g)H,
then µ is a C∞ group action of G on G/H. The isotropy subgroup at x = gH is

Gx = {ĝ ∈ G | (ĝg)H = gH}.

Proof.If this is to be a group action, the two axioms must be satisfied.

(1) If e ∈ G is the identity element and gH is the left coset of g ∈ G, then

µ(e, gH) = (eg)H = gH

and

(2) If g1 and g2 are in G and gH is the left coset of g ∈ G, then

µ(g2, µ(g1, gH)) = µ(g2, (g1g)H) = (g2(g1g))H.

G is a group, so associativity of group multiplication assures (g2(g1g)) = ((g2g1)g).
Therefore

µ(g2, µ(g1, gH)) = ((g2g1)g)H = µ(g2g1, gH).
Therefore µ is a group action and it only remains to show that the action is smooth.

Let U be any open set in G/H. Define W ⊆ G× G such that if (g1, g2) ∈ W ,
then

g1 · g2 ∈ π−1(U),
which is open in G by continuity of π. The group multiplication is continuous so,
using the map given in Definition 3.6,

W = θ−1
1 (π−1(U))
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is open in G×G. Now let the induced open map

π̃ : G×G→ G×G/H
be defined by the formula

π̃(g1, g2) = (g1, π(g2)).

It follows that π̃(W ) = µ−1(U) because W was made up of all elements g1 and g2
in G such that π(g1g2) ∈ U or (g1g2)H ∈ U , hence π̃(W ) contains every pair of
elements (g1, g2H) ∈ G × G/H such that µ(g1, g2H) ∈ U . Therefore U open in
G/H implies µ−1(U) is open in G×G/H and so µ is a continuous action. �

Definition 3.10. A manifold M is said to be a homogeneous space of a Lie group
G if there is a transitive C∞ action of G on M .

In the next section it is shown that every homogeneous space is equivalent to a
quotient G/H.

4. G-Equivariant Diffeomorphisms

It has been shown that homogeneous spaces can be constructed using Lie groups
and their subgroups. One might wonder how many homogeneous spaces can be
constructed from a given Lie group. A homogeneous space is a manifold with a
transitive group action; so for two homogeneous spaces to be equivalent, not only
must they be equivalent as manifolds (i.e diffeomorphic), but the group actions
must be equivalent as well.

Definition 4.1. Let

µ1 : G×M1 →M1 and µ2 : G×M2 →M2

be actions of a Lie group on the manifolds M1 and M2. Then the actions µ1 and
µ2 are equivalent if there exists a diffeomorphism F : M1 →M2 such that

F (µ1(g, x)) = µ2(g, F (x))

for all g ∈ G and x ∈M1. In this case the diffeomorphism F is called G-equivariant.

Theorem 4.1. Let G be a Lie group acting transitively on a manifold M by a
smooth action µ. If x is any point in M , then the mapping F : G/Gx → M
defined by F (gH) = µx(g) is a smooth G-equivariant diffeomorphism. In particular,
M ∼= G/Gx.

Proof. Begin by letting H = Gx0 for any fixed x0 ∈M . Define F : G/H →M by

F (gH) = µx0(g) = µ(g, x0) (3)

for any coset gH ∈ G/H. In order for this map is well-defined, for any g, g̃ ∈ G
such that gH = g̃H it must be shown that F (gH) = F (g̃H). If gH = g̃H, then
g−1g̃ ∈ H = Gx0 , so

x0 = µ(g−1g̃, x0).
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From this equation, using the rules of group action, it follows that

µ(g, x0) = µ
(
g, µ(g−1g̃, x0)

)
= µ

(
g(g−1g̃), x0

)
= µ

(
(gg−1)g̃, x0

)
= µ(g̃, x0).

Therefore, F (gH) = F (g̃H), as required.

In order for F to be a bijection, it must be both onto and one-to-one. The action
µ is transitive, so for any x ∈ M there exists a g ∈ G such that x = µ(g, x0) =
µx0(g) = F (gH); hence F is onto.

Now let F (g1H) = F (g2H) for any g1, g2 ∈ G. If this implies that g1H = g2H,
then F is one-to-one. If F (g1H) = F (g2H) then µx0(g1) = µx0(g2). Furthermore,
this shows that g1x0 = g2x0; which implies

g−1
1 (g1x0) = g−1

1 (g2x0). (4)

Now applying the rules of group action,

g−1
1 (g1x0) = (g−1

1 g1)x0 = x0, and
g−1
1 (g2x0) = (g−1

1 g2)x0.

Substituting these values into Equation 4,

x0 = (g−1
1 g2)x0.

Therefore, g−1
1 g2 ∈ Gx0 = H. This amounts to saying that g1 and g2 are in the

same coset, or g1H = g2H, as required. It follows that F is a one-to-one mapping.

The map F is a bijection, but in order to be a diffeomorphism, it must be C∞

as well. This becomes clear, however, after considering the locally smooth section
map σ : U → G, for all U ⊆ G/H, defined in Equation 2 of Section 3 by the identity

(π ◦ σ)(x) = x

for all x ∈ U . Any section is locally smooth and so for every x ∈ G/H there exists
a section σx on a neighborhood Ux such that

F (x) = µx0 ◦ Le ◦ σx(x),

where Le is left multiplication by the identity element in G. Such an equation exists
for any x ∈ G/H. Thus F is the composition of smooth maps; hence, smooth itself.

Now it just remains to show that F is G-equivariant. The action of G on M has
already been defined by µ, so let the natural action of G on G/H (as defined in
Theorem 3.6) be denoted by µ̂. It must be shown that if g ∈ G and x ∈ G/H, then

F
(
µ̂(g, x)

)
= µ

(
g, F (x)

)
. (5)

If x ∈ G/H, then x = g̃H for some g̃ ∈ G. It follows from Equation 3 that

F
(
µ̂(g, x)

)
= F

(
µ̂(g, g̃H)

)
= F

(
(gg̃)H

)
= µ(gg̃, a)

= µ
(
g, µ(g̃, a)

)
= µ

(
g, F (g̃H)

)
= µ

(
g, F (x)

)
.

Therefore Equation 5 is satisfied, as required. �
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Corollary 4.2. Let G be a Lie group which acts transitively on a manifold M by
a smooth action µ. If H = Gx for any x ∈ M , then

TxM ∼=
TeG

TeH
.

Before this can be proved, a lemma is needed.

Lemma 4.3. Let G be a Lie group which acts transitively on a manifold M by
a smooth action µ. If H = Gx for any x ∈ M and if µx : G → M is defined
µx(g) = µ(g, x) for all g ∈ G, then (µx)∗ : TeG → TxM , and

image(µx∗) = TxM and ker(µx∗) = TeH.

Proof. The map µx is from G to M , so by definition (µx)∗ : TeG → Tµx(e)M .
Part (1) of Definition 3.1 implies µx(e) = µ(e, x) = x, so Tµx(e)M = TxM . This
proves the first claim.

In order to show im(µx∗) = TxM , consider the tangent vector v ∈ TxM . There
exists some integral curve γ(t) ∈ M such that γ̇(0) = v. The action µ is transitive,
so µx maps onto M . It follows that there is some curve γ1(t) ∈ G such that
γ(t) = µx

(
γ1(t)

)
. Let Xe = γ̇1(0) ∈ TeG. Then

(µx)∗(Xe) = (µx)∗
(
γ̇1(0)

)
= γ̇(0) = v

and so (µx)∗ is onto. Therefore image(µx∗) = TxM .

It remains to show that ker(µx∗) = TeH. Let Xe ∈ TeH; there exists an integral
curve γ(t) ∈ H such that Xe = γ̇(0). Calculating the image of this curve under µx
will give an integral curve of (µx)∗Xe in M :

µx
(
γ(t)

)
= µ

(
γ(t), x

)
= x,

because γ(t) ∈ H = Gx for each t. Therefore,

(µx)∗Xe =
d

dt
µx
(
γ(t)

)
|t=0=

d

dt
(x) |t=0= 0.

Therefore, (µx)∗Xe = 0 and so Xe ∈ ker(µx∗) for any Xe ∈ TeH, implying

TeH ⊆ ker(µx∗).

For the map (µx)∗ : TeG→ TxM ,

dim
(

ker(µx∗)
)

+ dim
(
im(µx∗)

)
= dim(TeG). (6)

Using this equation, remembering that dim(G) = dim(TeG) and dim(M) = dim(TxM),

dim
(

ker(µx∗)
)

= dim(TeG)− dim
(
im(µx∗)

)
= dim(TeG)− dim(TxM)
= dim(G)− dim(M).

From Theorem 4.1, M ∼= G/H, so

dim
(

ker(µx∗)
)

= dim(G)− dim(M) = dim(G)− dim(G/H)
= dim(G)− dim(G) + dim(H) = dim(H) = dim(TeH).
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Thus dim
(

ker(µx∗)
)

= dim(TeH); but TeH ⊆ ker(µx∗), so

TeH = ker(µx∗),

as required. Hence, the proof is complete. �

Proof of Corollary. The map µx∗ : TeG → TxM is a vector space homomor-
phism, so it must be true that

TeG

ker(µx∗)
∼= im(µx∗).

The lemma then implies that
TeG

TeH
∼= TxM, (7)

as required. �

Theorem 4.4. Let G be a Lie group with closed subgroups H and K. If φ : G→ G
is a smooth group isomorphism such that φ(H) = K, then φ induces a G-equivariant
diffeomorphism φ̃ : G/H → G/K.

Proof. Define the induced mapping φ̃ : G/H → G/K by

φ̃(gH) = φ(g)K.

In order to show this mapping is well-defined, it is necessary to show φ̃(gH) =
φ̃(ĝH) for any two g, ĝ ∈ G in the same coset. Assume gH = ĝH. Then it must
be that g−1ĝ ∈ H. By assumption φ(H) = K, so it follows that φ(g−1ĝ) ∈ K.
However, φ is a group isomorphism and so φ(g−1ĝ) = φ(g)−1 ·φ(ĝ). Thus φ(g)K =
φ(ĝ)K, implying φ̃(gH) = φ̃(ĝH), as required.

To show φ̃ is G-equivariant, first define two group actions:

i. µ1 : G×G/H → G/H, by µ1(g1, g2H) = (g1g2)H, and
ii. µ2 : G×G/K → G/K, by µ1(g1, g2K) = (g1g2)K.

It has already been shown that these are actions, so the proof will be omitted here.
Now let g ∈ G and x ∈ G/H. The goal is to show

φ̃(µ1(g, x)) = µ2(φ(g), φ̃(x)). (8)

If x ∈ G/H, then x = ĝH for some ĝ ∈ G. It follows from the definitions of the
various mappings that

φ̃(µ1(g, x)) = φ̃(µ1(g, ĝH)) = φ̃((gĝ)H) = φ(gĝ)K.

The map φ is an isomorphism, so

φ(gĝ)K = (φ(g)φ(ĝ))K = µ2(φ(g), φ(ĝ)K) = µ2(φ(g), φ̃(ĝH)).

By definition ĝH = x, so Equation 8 is satisfied. Thus φ̃ is G-equivariant.

To show φ̃ is one-to-one (or injective) assume φ̃(g1H) = φ̃(g2H) for any g1, g2 ∈
G. If it can be shown that g1H = g2H then φ̃ is injective. If φ̃(g1H) = φ̃(g2H),
then using the definition of φ̃, it follows that

φ(g1)K = φ(g2)K.
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This implies that φ(g1)−1φ(g2) ∈ K. As φ is an isomorphism φ(g1)−1φ(g2) =
φ(g−1

1 g2) ∈ K. This in turn implies that g−1
1 g2 ∈ H, or g1H = g2H, as required.

If φ̃ is an isomorphism, it must also be onto (or surjective). Let y ∈ G/K.
Then there exists some ĝ ∈ G such that x = ĝK. The map φ was by assumption
an isomorphism. Thus there is a g ∈ G such that ĝ = φ(g). It follows that if
x = gH ∈ G/H, then

φ̃(x) = φ̃(gH) = φ(g)K = ĝK = y.

Thus φ̃ is surjective and so an isomorphism.

It only remains to show that φ̃ is smooth. By a similar argument to that used
earlier in the proof of Theorem 4.1,

φ̃ = π2 ◦ φ ◦ σ

and so φ̃ is smooth as the composition of smooth maps. �

5. Linear Isotropy Representation

It is sometimes possible to think of a group in the more familiar setting of linear
algebra.

Definition 5.1. A representation of a group G on a vector space V is a homo-
morphism ρ : G → Gl(V ), where Gl(V ) is the group of automorphisms of V . A
representation ρ is said to be faithful if

ker(ρ) = ρ−1(I) = e,

where I is the identity matrix in Gl(V ) and e is the identity element in the group
G, i.e. the kernel of ρ is trivial.

Let a Lie group G act on a manifold M by the action µ. It has already been
shown that for any g ∈ G a diffeomorphism µg : M → M can be defined by
µg(x) = µ(g, x) = gx. Given a point p ∈ M , this induces another map (µg)∗ :
TpM → TgpM , as was defined in Section 2, Definition 2.6.

Now consider the special case when g ∈ Gp, the isotropy subgroup of G at
p ∈ M . Then gp = p so (µg)∗ : TpM → TpM . Now define a new mapping
ρ : Gp → Gl(TpM) by

ρ(g) = (µg)∗. (9)

This defines a representation of the isotropy subgroup of p, called the linear isotropy
representation of Gp. To show this claim is true, consider g1, g2 ∈ Gp. By definition,
ρ(g1g1) = (µg1g2)∗. The rules of group action assure that µg1g2 = µg1µg2 and so,
by Definition 2.6,

(µg1g2)∗ = (µg1)∗(µg2)∗.

Furthermore, (µg1)∗(µg2)∗ = ρ(g1)ρ(g2). Therefore ρ(g1g2) = ρ(g1)ρ(g2), as re-
quired.
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For any g ∈ G, the map µg : M → M is a diffeomorphism of manifolds. Apply-
ing Equation 1 to µg, if ∂

∂x1 |p . . .
∂
∂xn |p is a basis for TpM and ∂

∂y1 |µg(p) . . .
∂
∂yn |µg(p)

is a basis for Tµg(p)N then

(µg)∗(
∂

∂xi
) =

∂(µg)α

∂xi
|p

∂

∂yα
.

Thus, for any g ∈ Gp, ρ(g) = ∂µig
∂xj (g, p).

Let γ be a metric on the manifold M . Recall that a map φ : M → M is an
isometry of γ if γp = φ∗γφ(p). Given an action µ of G on M , if µg is an isometry of
γ for all g ∈ G, then the group G is said to act by isometries with respect to the
metric γ on the manifold M . When a Lie group acts on a manifold by isometries,

γp(Xp, Yp) = (µ∗gγ)(Xp, Yp)

for Xp, Yp ∈ TpM ; however, a metric γ is a field of bilinear forms on M , so

(µ∗gγµg(p))(Xp, Yp) = γµg(p)

(
(µg)∗Xp, (µg)∗Yp

)
.

This gives the following equation:

γp(Xp, Yp) = γgp

(
(µg)∗Xp, (µg)∗Yp

)
, (10)

which leads to a useful definition.

Definition 5.2. Let a Lie group G act on a manifold M by the action µ. A metric
γ on M is called G-invariant if Equation 10 holds for all p ∈ M and g ∈ G. This
is equivalent to saying G acts by isometries with respect to the metric γ on M .

Return to the special case of g ∈ Gp. If g is in the isotropy subgroup of p ∈M ,
then Equation 10 becomes, using Equation 9,

γp(Xp, Yp) = γp

(
ρ(g)Xp, ρ(g)Yp

)
.

The mapping ρ is into Gl(TpM), so ρ(g) is a nonsingular matrix preserving the
metric γ. Therefore ρ(g) ∈ O(r, s) where γ is of type (r, s) at p ∈M . This can be
formalized into the following theorem:

Theorem 5.1. Let G be a Lie group acting on a manifold M by the action µ. If
γ is a G-invariant metric on M , then γp is an inner product on TpM which is
invariant under the linear isotropy representation ρ : Gp → Gl(TpM).

6. Fundamental Theorem of Invariant Metrics on Homogeneous
Spaces

Let a Lie group G act on a manifold M by the transitive action µ. It was shown
in Theorem 5.1 that if γ is a G-invariant metric on M , then γp is an inner product
on TpM which is invariant under ρ : Gp → Gl(TpM). In the case of a transitive
action, the converse is also true.
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Theorem 6.1. Let a Lie group G act on a manifold M by the transitive action
µ. If η is an inner product on TpM which is invariant under the linear isotropy
representation ρ : Gp → Gl(TpM), then there exists a unique G-invariant metric γ
on M such that γp = η.

Proof. Assume η is an inner product on TpM which is invariant under the linear
isotropy representation ρ : Gp → Gl(TpM). Then

µ∗gη = η for all g ∈ Gp.

Begin by defining γ pointwise. For any q ∈ M there exists an a ∈ G such that
q = µ(a, p) by the transitivity of the action. Thus a metric at q can be defined

γq(Xq, Yq) = (µ∗a−1η)(Xq, Yq) = η((µa−1)∗Xq, (µa−1)∗Yq).

This is simply the pull-back of η from TpM to TapM by the diffeomorphism µa−1 .

It must now be shown that γ is well-defined. There may be more than one
g ∈ G such that µ(g, p) = q; i.e. there may exist b ∈ G such that a 6= b and
µ(a, p) = µ(b, p). The definition of γq should be independent of this choice, so

µ∗a−1η = µ∗b−1η.

If µ(a, p) = µ(b, p), then p = µ(b−1, µ(a, p)) = µ(b−1a, p). Therefore, b−1a ∈ Gp.
Let c = b−1a ∈ Gp. It follows that b−1 = (b−1a)a−1 = ca−1. Using this result,

µ∗b−1η(Xq, Yq) = η((µb−1)∗Xq, (µb−1)∗Yq) = η((µca−1)∗Xq, (µca−1)∗Yq).

Multiplication in a Lie group is smooth and c ∈ Gp implies µ∗cη = η, so

η((µca−1)∗Xq, (µca−1)∗Yq) = η((µc)∗(µa−1)∗Xq, (µc)∗(µa−1)∗Yq)
= µ∗cη((µa−1)∗Xq, (µa−1)∗Yq)
= η((µa−1)∗Xq, (µa−1)∗Yq)
= µ∗a−1η(Xq, Yq).

Combining these results: µ∗b−1η(Xq, Yq) = µ∗a−1η(Xq, Yq), as required. Thus γq is
well-defined for all points q ∈ M , hence γ is also well-defined.

It only remains to show that γ is G-invariant, or µ∗gγ = γ for all g ∈ G. Consider
any q ∈ M . The goal is to show for g ∈ G that µ∗gγq = γg−1q. The action is
transitive, so there exists an a ∈ G such that q = µ(a, p) (as before). If X,Y are
vector fields on M and g−1q = r, then

µ∗gγq(Xg−1q, Yg−1q) = µ∗g[γq(Xr, Yr)] = µ∗g[(µ
∗
a−1η)(Xr, Yr)]

= (µ∗gµ
∗
a−1)[η(Xr, Yr)] = (µ∗a−1g)[η(Xr, Yr)]

= (µ∗a−1gη)(Xr, Yr) = (γ(g−1a)p)(Xr, Yr)

= γg−1q(Xg−1q, Yg−1q).

Therefore γ is G-invariant, as required.

It only remains to show uniqueness of the metric γ. Let γ̃ be another G-invariant
metric on M such that γ̃p = η. Again let q be any point in M . The action µ is
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transitive, so there exists a g ∈ G such that q = µ(g, p) = µg(p). The metrics γ
and γ̃ on M are G-invariant, so

γp(Xp, Yp) = γµg(p)((µg)∗Xp, (µg)∗Yp) = γq(X̄q, Ȳq)

and
γ̃p(Xp, Yp) = γ̃µg(p)((µg)∗Xp, (µg)∗Yp) = γ̃q(X̄q, Ȳq).

The metrics are equal at p, so by substitution, γq(X̄q, Ȳq) = γ̃q(X̄q, Ȳq). This is
true for any q ∈ M so γ = γ̃. �

Thus on a homogeneous space M there is a one-to-one correspondence between
the G-invariant metrics on M and the inner products on TpM invariant under the
linear isotropy representation.

This section will be concluded with two theorems which will be given without
proof. For further details [3].

Theorem 6.2. Let G be a Lie group and M a manifold with a metric γ. If γ is a
G-invariant metric, then the linear isotropy representation ρ : Gp → Gl(TpM) is
a faithful representation for any p ∈M .

Theorem 6.3. Let G be a Lie group and M a manifold with a metric γ. If γ is
a G-invariant metric, then dim(G) ≤ 1

2n(n + 1), where n is the dimension of the
manifold M . 1

7. Invariant Inner Products on g/h

Let a Lie group G act transitively on a manifold M by µ and let H = Gx0

for some fixed x0 ∈ M . In the previous section it was shown that there is a one-
to-correspondence between the G-invariant metrics on M and inner products on
Tx0M invariant under the linear isotropy representation, often called ρH-invariant
inner products on Tx0M . The goal now is to turn the problem of finding invariant
inner products on a tangent space to a manifold into an algebraic problem. In this
section the action of H on Tx0M (by ρ) will be shown to be equivalent to an action
of H on the quotient space g/h, where g and h are the Lie algebras of G and H,
respectively.

As G/H was the set of cosets gH for g ∈ G, g/h is the set of cosets X + h for
X ∈ g. Similarly to the case of groups, X + h = {X + Y | Y ∈ h}, where + is
vector space addition. As before, X1 + h = X2 + h if and only if X1 −X2 ∈ h.

Before the action of H on Tx0M can be replaced by an action of H on g/h,
an action of H on g/h must be defined. Begin by defining for g ∈ G the map
Ad(g) : g→ g by

Ad(g)(X) = (Lg)∗(X)

for all X ∈ g, recalling Lg : G→ G is left multiplication by g ∈ G.

1If dim(G) = 1
2
n(n + 1), then M is a space of constant curvature.
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Proposition 7.1. If G is a Lie group, then for all g ∈ G and X ∈ g,

g ·X = Ad(g)(X)

defines an action of G on g.

Proof. If this is to be a group action, it must satisfy the conditions of Defini-
tion 3.1. First, if e ∈ G is the identity element, then for all X ∈ g,

e · X = Ad(e)(X) = (Le)∗(X) = X,

as required. Secondly, let g1, g2 ∈ G and X ∈ g. Then a simple, albeit long,
calculation shows

g2 · (g1 ·X) = g2 ·Ad(g1)(X) = Ad(g2)
(
Ad(g1)(X)

)
= Ad(g2)

(
(Lg1)∗(X)

)
= (Lg2)∗

(
(Lg1)∗(X)

)
=

(
(Lg2)∗(Lg1)∗

)
(X) = (Lg2 ◦ Lg1)∗(X)

= (Lg2g1)∗(X) = Ad(g2g1)(X) = (g2g1) ·X.
This completes the proof of the proposition. �

As claimed, · is an action of G on g. If H is a closed subgroup of G, then · is
also an action of H on g. The action of H on g can now be used to define an action
of H on g/h. Begin by defining for h ∈ H the map Ad(h) : g/h→ g/h by

Ad(h)(X + h) = Ad(h)(X) + h

for all X + h ∈ g/h.

Proposition 7.2. If G is a Lie group with closed subgroup H, then for all h ∈ H
and X + h ∈ g/h,

h · (X + h) = Ad(h)(X + h)
defines an action of H on g/h.

Proof. Before this can be an action, it must be well-defined. If X + h = Y + h ∈
g/h, then X − Y ∈ h. If h ∈ H, then Ad(h) : h→ h, so

Ad(h)(X − Y ) = Ad(h)(X)−Ad(h)(Y ) ∈ h.

It follows that Ad(h)(X)+h = Ad(h)(Y )+h; hence Ad(h)(X+h) = Ad(h)(Y +h).
Thus the map is well-defined.

If this is to be a group action, it must satisfy the conditions of Definition 3.1.
First, if e ∈ H is the identity element, then for all X + h ∈ g/h,

e · (X + h) = Ad(e)(X + h) = Ad(e)(X) + h = X + h,

as required. Secondly, let h1, h2 ∈ H and X + h ∈ g/h. Then using previously
found properties of Ad,

h2 ·
(
h1 · (X + h)

)
= h2 ·

(
Ad(h1)(X + h)

)
= Ad(h2)

(
Ad(h1)(X) + h

)
= Ad(h2)

(
Ad(h1)(X)

)
+ h

= Ad(h2h1)(X) + h = Ad(h2h1)(X + h)
= (h2h1) · (X + h).
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Therefore · is an action of H on g/h. �

At this point, two actions of the Lie subgroup H = Gx0 have been defined: (1)
H acting on Tx0M and (2) H acting on g/h. For h ∈ H, these actions are defined
as follows:

(1) if v ∈ Tx0M , then

h · v = ρ(h)(v) = (µh)∗(v),

(2) if X + h ∈ g/h, then

h · (X + h) = Ad(h)(X + h) = Ad(h)(X) + h = (Lh)∗(X) + h.

In order to show these actions are equivalent, begin by defining a map φ : g/h → Tx0M
by

φ(X + h) = (µx0)∗(Xe) (11)
for all X + h ∈ g/h. Recall from Section 3 the map µx : G → M defined µx(g) =
µ(g, x) is smooth for any x ∈ M and g ∈ G.

The first task is to show that φ is well-defined. Let X + h = Y + h ∈ g/h, then
it follows that X − Y ∈ h; hence (X − Y )e = Xe − Ye ∈ TeH. From Lemma 4.3, if
H = Gx0 , then TeH = ker(µx0∗), so

(µx0)∗(Xe − Ye) = 0.

The map (µx0)∗ is a linear map, so

(µx0)∗(Xe) = (µx0)∗(Ye);

hence
φ(X + h) = φ(Y + h),

as required. Therefore the map φ is well-defined.

Theorem 7.3. Let G be a Lie group acting on a manifold M by a transitive action
µ. For any x0 ∈ M , if H = Gx0 is the isotropy subgroup of x0 in G, then the
map φ : g/h→ Tx0M defined by

φ(X + h) = (µx0)∗(Xe) (11)

is an H-equivariant vector space isomorphism, that is

φ
(
h · (X + h)

)
= h · φ(X + h) (12)

for all h ∈ H and X + h ∈ g/h.

Proof. The first step is to show that φ is an isomorphism. Begin by showing that
it is a bijection. In order to show that it is one-to-one, consider X+h, Y +h ∈ g/h.
Assume φ(X + h) = φ(Y + h), then

(µx0)∗(Xe) = (µx0)∗(Ye),

so
0 = (µx0)∗(Xe)− (µx0)∗(Ye) = (µx0)∗(Xe − Ye).
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It follows that Xe − Ye = (X − Y )e ∈ ker(µx0∗) = TeH. Therefore X − Y ∈ h and
so X + h = Y + h; hence φ is one-to-one.

The proof that φ is onto Tx0M is just as straightforward. Let v ∈ Tx0M . The
image of (µx0)∗ is Tx0M (once again using Lemma 4.3), so there exists a vector
Xe ∈ TeG such that

v = (µx0)∗(Xe).
If X is defined as the right invariant vector field on G such that X is Xe at e ∈ G,
then

v = φ(X + h)
and so φ is onto Tx0M , as required.

To be a vector space isomorphism, φ must be a vector space homomorphism,
but this a direct result of (µx0)∗ being linear:

φ
(
(X + h) + (Y + h)

)
= φ(X + Y + h) = (µx0)∗

(
(X + Y )e

)
= (µx0)∗(Xe + Ye) = (µx0)∗(Xe) + (µx0)∗(Ye)
= φ(X + h) + φ(Y + h).

Therefore, φ is a vector space isomorphism and so the first part of the proof is
complete.

It only remains to check Equation 12. First consider the left hand side of Equa-
tion 12:

φ
(
h · (X + h)

)
= φ

(
Ad(h)(X + h)

)
= φ

(
Ad(h)(X) + h

)
= (µx0)∗

((
Ad(h)(X)

)
e

)
= (µx0)∗

((
(Lh)∗(X)

)
e

)
= (µx0)∗

(
(Lh)∗(Xh−1)

)
= (µx0 ◦ Lh)∗(Xh−1).

The vector field X is a right invariant vector field, so

Xh−1 = (Rh−1)∗(Xe);

hence

φ
(
h · (X + h)

)
= (µx0 ◦ Lh)∗(Xh−1)

= (µx0 ◦ Lh)∗
(
(Rh−1)∗(Xe)

)
= (µx0 ◦ Lh ◦Rh−1)∗(Xe).

Now consider the right hand side of Equation 12:

h · φ(X + h) = h · (µx0)∗(Xe) = ρ(h)(µx0)∗(Xe)
= (µh)∗(µx0)∗(Xe) = (µh ◦ µx0)∗(Xe).

If Equation 12 is satisfied, then the left hand side,

(µx0 ◦ Lh ◦Rh−1)∗(Xe),

must equal the right hand side,

(µh ◦ µx0)∗(Xe),

or
(µx0 ◦ Lh ◦Rh−1)∗(Xe) = (µh ◦ µx0)∗(Xe). (13)
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So if Equation 13 holds then Equation 12 follows and the proof will be complete.
Consider an arbitrary element g ∈ G. Then because h ∈ Gx0 and consequently
h−1 ∈ Gx0 , the left side of Equation 13 is

(µx0 ◦ Lh ◦Rh−1)(g) = µx0(hgh−1) = µ(hgh−1, x0)
= µ

(
hg, µ(h−1, x0)

)
= µ(hg, x0).

Finally, the right side of Equation 13 is

(µh ◦ µx0)(g) = µh
(
µx0(g)

)
= µ

(
h, µ(g, x0)

)
= µ(hg, x0).

Thus µx0 ◦ Lh ◦Rh−1 = µh ◦ µx0 , so

(µx0 ◦ Lh ◦Rh−1)∗ = (µh ◦ µx0)∗,

as required. Therefore, Equation 13 holds, hence Equation 12 holds, and φ is
H-equivariant. Thus all the necessary conditions have been met. �

This proof shows that H acts on g/h as it acts on Tx0M . This will be formalized
in the following corollary.

Corollary 7.4. Let G be a Lie group acting transitively on a manifold M by the
smooth action µ. If H = Gx for some x ∈M with linear isotropy representation ρ,
then there is a one-to-one correspondence between ρH-invariant inner products on
Tx0M and AdH-invariant inner products on g/h.

8. The ad Action

The problem of finding invariant metrics on a manifold has so far been reduced
to considering actions of a Lie group on a vector space. Before this can be further
reduced to an action of a Lie algebra on a vector space, one more crucial tool must
be introduced, the exponential map. The construction of the exponential map here
follows that of [4], and requires the following theorem, given here without proof.
(A full proof of this and the following theorems can be found in [4], pp. 101-104.)

Theorem 8.1. Let G1 and G2 be Lie groups and let g1 and g2 be their respective Lie
algebras. If G1 is simply connected and ψ : g1 → g2 is a Lie algebra homomorphism,
then their exists a unique group homomorphism φ : G1 → G2 such that ψ = φ∗.

Define L(R) to be the Lie algebra of R. The Lie algebra of R is one-dimensional,
so call the one basis element d

dr ; hence any element of L(R) can be given as λ d
dr ,

where λ is any scalar. Let G be any Lie group with Lie algebra g. For any X ∈ g,
the map ψ : L(R)→ g defined by

ψ
(
λ
d

dr

)
= λX

is a homomorphism of the Lie algebra of R into the Lie algebra g of G. Theorem 8.1
then insures the existence of a unique homomorphism

expX : R→ G
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such that (expX)∗ = ψ. As a note, the one-parameter subgroup given by expX :
R→ G is the unique integral curve of X at e.

Definition 8.1. Let expX : R→ G be as given above. Then the exponential map

exp : g→ G

is defined
exp(X) = expX(1)

for all X ∈ g.

The properties of the exp map are well known (see citewarner, for example) and
will not be treated separately here; however, some properties will be needed in
defining the adjoint action of a Lie algebra on a vector space which will be used
throughout the rest of this paper. Those properties are listed now, without proof.

Theorem 8.2. Let G be a Lie group with Lie algebra g. The map exp : g→ G is
smooth. Furthermore, if X ∈ g, then

exp(tX) = expX(t)

for all t ∈ R.

Theorem 8.3. Let G1 and G2 be Lie groups and let g1 and g2 be their respective
Lie algebras. If φ : G1 → G2 is a group homomorphism, then φ ◦ exp = exp ◦φ∗.

Theorem 8.4. Let G be a Lie group with subgroup H. Let g and h be their
respective Lie algebras. For X ∈ g,

(1) if X ∈ h then exp(tX) ∈ H for all t ∈ R, and

(2) if exp(tX) ∈ H for t in some open interval in R, then X ∈ h.

Given these properties of the exponential, recall Ad : G→ Aut(g) where Ad(g) :
g→ g for g ∈ G is defined Ad(g)(X) = (Lg)∗X or all X ∈ g. Now define

ad : g→ g

as ad = Ad∗. Then for X ∈ g, ad(X) : g→ g is defined by

ad(X)(Y ) =
d

dt

(
Ad
(

expx(t)
)
(Y )
)∣∣∣∣
t=0

for all Y ∈ g, recalling that expX(t) is the unique integral curve of X at e.

From Theorem 8.3, the following equation must be true:

Ad ◦ exp = exp ◦ad. (14)

As a consequence,

Ad
(

exp(tX)
)

=
∞∑
k=0

tk

k!
ad(X)k. (15)

These equations will prove very useful.
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Proposition 8.5. Let G be a lie group with Lie algebra g. If X ∈ g, then

ad(X)(Y ) = [X,Y ] (16)

for all Y ∈ g, where [, ] is the Lie algebra bracket on g.

Proof. Begin by fixing X ∈ g. For simplicity, let γ(t) := expX(t), the unique
integral curve of X at e ∈ G. Let Y ∈ g. Both ad(X)(Y ) and [X,Y ] are elements
of g, hence right invariant vector fields, therefore it is enough to show equality at
the identity. Following from definition,

ad(X)(Y )e =
d

dt

(
Ad
(
γ(t)

)
(Y )
)
e

∣∣∣∣
t=0

=
d

dt

((
Lγ(t)

)
∗(Y )

)
e

∣∣∣∣
t=0

. (17)

Note, however, that((
Lγ(t)

)
∗(Y )

)
e

=
(
Lγ(t)

)
∗

(
Yγ(−t)

)
=
(
Lγ(t)

)
∗

(
YLγ(−t)

)
and

d

dt

(
Lγ(t)

)
∗

(
YLγ(−t)

)∣∣∣∣
t=0

=
(
LXY

)
e
.

This last expression is the Lie derivative of Y with respect to X, which in the
case of vector fields is merely the bracket operation. Therefore, substituting into
Equation 17

ad(X)(Y )e =
(
LXY

)
e

= [X,Y ]e,

as required. �

Now it will be shown that, given a Lie group G with a connected subgroup H,
there exists a one-to-one correspondence between inner products on g/h invariant
under action by H and inner products on g/h invariant under action by h, the Lie
algebra of H.

Definition 8.2. Let g be a (real) Lie algebra and V a vector space. A mapping
µ : g× V → V is said to be a Lie algebra action of g on the vector space V if the
following two conditions are satisfied:

(1) If X1, X2 ∈ g and u ∈ V , then for α ∈ R

µ(αX1 +X2, u) = αµ(X1, u) + µ(X2, u).

(2) If X1, X2 ∈ g, then for all u ∈ V

µ(X1, µ(X2, u))− µ(X2, µ(X1, u)) = µ([X1, X2], u).

The Lie algebra g is said to act on the vector space V by the action µ. For simplicity,
µ(X,u) is often written X · u.

Note that the Lie bracket operation [ , ] : g × g → g defines an action of a
Lie algebra on itself. Property (1) is clear from the definition of the bracket, and
Property (2) follows directly from the Jacobi identity.
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Proposition 8.6. If g is a Lie algebra, then for all X,Y ∈ g

X · Y = ad(X)(Y )

defines an action of g on g.

Proof. The proof follows directly from Proposition 8.5. �

Thus · provides an action of g on g, hence an action of h on g. In turn, this can
now be used to define an action of h on g/h. Begin by defining for X ∈ g the map
ad(X) : g/h→ g/h by

ad(X)(Y + h) = ad(X)(Y ) + h

for all Y + h ∈ g/h.

Proposition 8.7. If g is a Lie algebra with Lie subalgebra h, then for all X ∈ h
and Y + h ∈ g/h

X · (Y + h) = ad(X)(Y + h)

defines an action of h on g/h.

Proof. Before this can be an action, it must be well-defined. If Y +h = Z+h ∈ g/h,
then Y − Z ∈ h. By assumption, X ∈ h as well, so [X,Y − Z] ∈ h because h is
subalgebra. By bilinearity of the bracket operation,

[X,Y − Z] = [X,Y ]− [X − Z] ∈ h.

It follows that [X,Y ] + h = [X,Z] + h, hence ad(X)(Y ) + h = ad(X)(Z) + h and so

ad(X)(Y + h) = ad(X)(Z + h),

as required. Thus the map is well-defined.

Now it is necessary to check the two conditions of Definition 8.2. First, assume
X1, X2 ∈ h and α ∈ R. For all Y + h ∈ g/h,

(αX1 +X2) · (Y + h) = ad(αX1 +X2)(Y + h) = ad(αX1 +X2)(Y ) + h

= αad(X1)(Y ) + ad(X2)(Y ) + h = αad(X1)(Y + h) + ad(X2)(Y + h)
= α

(
X1 · (Y + h)

)
+
(
X2 · (Y + h)

)
,

as required.

Secondly, assume X1, X2 ∈ h. For all Y + h ∈ g/h,

X1 ·
(
X2 · (Y + h)

)
−X2 ·

(
X1 · (Y + h)

)
= ad(X1)

(
ad(X2)(Y + h)

)
− ad(X2)

(
ad(X1)(Y + h)

)
= ad(X1)

(
ad(X2)(Y ) + h

)
− ad(X2)

(
ad(X1)(Y ) + h

)
= ad(X1)

(
ad(X2)(Y )

)
+ h− ad(X2)

(
ad(X1)(Y )

)
+ h.

It has already been shown, however, that ad is an action of g on itself, so

ad(X1)
(
ad(X2)(Y )

)
− ad(X2)

(
ad(X1)(Y )

)
= ad

(
[X1, X2]

)
(Y ).
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Therefore,

X1 ·
(
X2 · (Y + h)

)
−X2 ·

(
X1 · (Y + h)

)
= ad(X1)

(
ad(X2)(Y )

)
− ad(X2)

(
ad(X1)(Y )

)
+ h

= ad
(
[X1, X2]

)
(Y ) + h = ad

(
[X1, X2]

)
(Y + h)

=
(
[X1, X2]

)
· (Y + h).

Thus, · does define an action of h on g/h. �

Definition 8.3. Let g be a Lie algebra. A quadratic form Q on a vector space V
is said to be g-invariant if there is an action · : g× V → V such that

Q(X · u, v) +Q(u,X · v) = 0

for all u, v ∈ V and X ∈ g. If this equation holds for X ∈ g, then it is written
X · Q = Q.

The same is said for G-invariance, where G is a Lie group acting on a vector
space, with g ∈ G replacing X ∈ g in the definition above.

Let the Lie algebra g act on the vector space V . Let {u1, . . . , uq} be a basis for
the vector space V and X · ui = αjiuj , for X ∈ g. If Q is a g-invariant quadratic
form on V , then

αkiQkj + αkjQik = 0 ⇐⇒ ATQ+QA = 0, (18)

where A is the matrix having components Aji = αji .

Recall that an inner product is a non-degenerate quadratic form. Thus for a Lie
algebra g with subalgebra h an inner product η on the vector space g/h is said to
be ad h-invariant (i.e. invariant under the ad action) if

η
(

ad(X)(Y + h), Z + h
)

+ η
(
Y + h, ad(X)(Z + h)

)
= 0 (19)

for all X ∈ h and Y + h, Z + h ∈ g/h.

Theorem 8.8. Let G be a Lie group with subgroup H where G and H have Lie
algebras g and h, respectively. Let η be an inner product on g/h. If η is AdH-
invariant, then it is adh-invariant.

Proof. Assume η on g/h is AdH-invariant. Then, by Definition 8.3,

η
(

Ad(h)(Y + h), Z + h
)

+ η
(
Y + h,Ad(h)(Z + h)

)
= 0

for all h ∈ H and Y + h, Z + h ∈ g/h. Let X ∈ h, then

ad(X) =
d

dt
Ad
(

expX(t)
)∣∣∣∣
t=0
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for t ∈ Dom(expX). Thus for Y + h, Z + h ∈ g/h

η
(

ad(X)(Y + h), Z + h
)

+ η
(
Y + h, ad(X)(Z + h)

)
= η

(
d

dt
Ad
(

expX(t)
)
(Y + h)

∣∣∣∣
t=0

, Z + h

)
+ η

(
Y + h,

d

dt
Ad
(

expX(t)
)
(Z + h)

∣∣∣∣
t=0

)
=

d

dt
η

(
Ad
(

expX(t)
)
(Y + h), Z + h

)∣∣∣∣
t=0

+
d

dt
η

(
Y + h,Ad

(
expX(t)

)
(Z + h)

)∣∣∣∣
t=0

=
d

dt

[
η
(

Ad
(

expX(t)
)
(Y + h), Z + h

)
+ η
(
Y + h,Ad

(
expX(t)

)
(Z + h)

)]
t=0

.

Note, however, that expX(t) = exp(tX) ∈ H for all t by Theorem 8.4. Thus,

η
(

ad(X)(Y + h), Z + h
)

+ η
(
Y + h, ad(X)(Z + h)

)
=

d

dt

(
0
)∣∣∣∣
t=0

= 0.

Therefore η is adh-invariant. �

Lemma 8.9. Let G be a Lie group with subgroup H where G and H have Lie
algebras g and h, respectively. Let η be an inner product on g/h. If η is adh-
invariant, then there exists a neighborhood U of H such that η is AdH-invariant
on U ; i.e. g · η = η for all g ∈ U .

Proof. Assume η is adh-invariant. Then

η
(

ad(X)(Y + h), Z + h
)

+ η
(
Y + h, ad(X)(Z + h)

)
= 0

for all X ∈ h and Y + h, Z + h ∈ g/h. Let U = exp(h). For all g ∈ U , there exists
an X ∈ h such that g = exp(X). Using this and applying Equation 15 (with t = 1),

η
(

Ad(g)(Y + h), Z + h
)

+ η
(
Y + h,Ad(g)(Z + h)

)
= η

(
Ad
(

exp(X)
)
(Y + h), Z + h

)
+ η
(
Y + h,Ad

(
exp(X)

)
(Z + h)

)
= η

( ∞∑
k=0

1
k!

ad(X)k(Y + h), Z + h
)

+ η
(
Y + h,

∞∑
k=0

tk

k!
ad(X)k(Z + h)

)
=

∞∑
k=0

1
k!
η
(

ad(X)k(Y + h), Z + h
)

+
∞∑
k=0

1
k!
η
(
Y + h, ad(X)k(Z + h)

)
=

∞∑
k=0

1
k!

[
η
(

ad(X)k(Y + h), Z + h
)

+ η
(
Y + h, ad(X)k(Z + h)

)]
Note, however, that ad(X)k(Y+h) = ad(X)

(
ad(X)k−1(Y+h)

)
, where ad(X)k−1(Y+

h) ∈ g/h. Thus,

η
(

Ad(g)(Y + h), Z + h
)

+ η
(
Y + h,Ad(g)(Z + h)

)
=
∞∑
k=0

1
k!
(
0
)

= 0.

Therefore η is AdH-invariant on U = exp(h). �

Lemma 8.10. Let G be a Lie group and U any open neighborhood of the identity
in G. If G is connected, then for any g ∈ G there exist g1, . . . , gk ∈ U such that

g = g1 · · · gk.
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Proof. For a proof see [4], pp. 93-94. �

Lemma 8.11. Let G be Lie group which acts on a vector space V and let η be an
inner product on V . If there exits a neighborhood of the identity U in G such that η
is U -invariant under the action of G on V , then if G is connected, η is G-invariant.

Proof. Let · be the action of G on V and assume the conditions of the lemma
hold. G is connected, so by Lemma 8.10 for any g ∈ G there exist g1, . . . , gk ∈ U
such that

g = g1 · · · gk.
By assumption, η on V is U -invariant, so

gi · η = η

for all gi ∈ U . Therefore

g · η = (g1 · · · gk) · η = (g1 · · · gk−1) · (gk · η) = (g1 · · · gk−1) · η
= . . . = (g1g2) · η = g1 · (g2 · η) = g1 · η
= η.

Thus g · η = η for any g ∈ G, as required, hence η is G-invariant. �

Theorem 8.12. Let G be a Lie group with subgroup H where G and H have Lie
algebras g and h, respectively. Let η be an inner product on g/h. If η is adh-
invariant and H is connected, then η is AdH-invariant.

Proof. The result follows directly from Lemmas 8.9 and 8.11. �

Corollary 8.13. Let G be a Lie group with connected subgroup H where G and H
have Lie algebras g and h, respectively. An inner product η on g/h is AdH-invariant
if and only if it is adh-invariant.

Proof. This is a direct consequence of Theorems 8.8 and 8.12. �

As a consequence of Corollary 8.13, the problem of finding invariant metrics on
manifolds is reduced to a purely algebraic problem.

9. g-Equivariant Isomorphisms

From this point on, the theory presented will be purely algebraic; however, it shall
be implicit that the Lie algebras in question arose from the set of right-invariant
vector fields on a Lie group, hence the labels g and h will be used.

Definition 9.1. A Lie algebra pair (g, h) is a Lie algebra g with a Lie subalgebra
h.

Two Lie algebra pairs (g1, h1) and (g2, h2) are said to be isomorphic, or equiva-
lent, if there is an isomorphism of Lie algebras, φ : g1 → g2 such that φ(h1) = h2. A
special case of the above is g1 = g2 = g, which gives the following: (g, h1) ∼ (g, h2)
if there exists a Lie algebra automorphism φ : g→ g such that φ(h1) = h2.
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Definition 9.2. Given a vector X in a Lie algebra g, define Ad(X) : g → g
by Ad(X) = Ad

(
exp(X)

)
. It follows that Ad(X) = exp

(
ad(X)

)
. Ad(X) is an

automorphism of the Lie algebra g. In fact, Ad(g) ⊆ Aut(g) as a normal subgroup,
called the inner automorphisms. The quotient Aut(g)/Ad(g) is called the outer
automorphisms, which is labeled Out(g).

Theorem 9.1. Let (g, h1) and (g, h2) be two Lie algebra pairs. If φ : g → g is
a Lie algebra automorphism such that φ(h1) = h2, then φ induces a g-equivariant
isomorphism φ̃ : g/h1 → g/h2.

Proof. Define the induced mapping φ̃ : g/h1 → g/h2 by

φ̃(Y + h1) = φ(Y ) + h2

for all Y + h1 ∈ g/h1. In order to show this mapping is well-defined, it is necessary
to show φ̃(Y + h1) = φ̃(Y ′ + h1) for any two Y, Y ′ ∈ g in the same coset. Assume
Y + h1 = Y ′ + h1. Then Y − Y ′ ∈ h1. By assumption φ(h1) = h2, so it follows
that φ(Y − Y ′) ∈ h2. It was also assumed that φ was a Lie algebra automorphism,
hence a homomorphism, so φ(Y − Y ′) = φ(Y ) − φ(Y ′). Thus φ(Y )h2 = φ(Y ′)h2,
implying φ̃(Y + h1) = φ̃(Y ′ + h1), as required.

To show φ̃ is g-equivariant, consider the ad action of g on both g/h1 and g/h2.
If Y + h ∈ g/h1, then for any X ∈ g

φ̃
(
X · (Y + h1)

)
= φ̃

(
[X,Y ] + h1

)
= φ

(
[X,Y ]

)
+ h2.

The map φ is a Lie algebra homomorphism, so

φ
(
[X,Y ]

)
+ h2 = [φ(X), φ(Y )] + h2 = φ(X) ·

(
φ(Y ) + h2

)
= φ(X) · φ̃

(
Y + h1

)
.

Therefore φ̃
(
X · (Y + h1)

)
= φ(X) · φ̃

(
Y + h1

)
and so φ̃ is g-equivariant.

It only remains to show that φ̃ is bijective. Assume φ̃(Y + h1) = φ̃(Y ′ + h1) for
some Y + h1, Y

′ + h1 ∈ g/h2. It follows that φ(Y ) + h2 = φ(Y ′) + h2, so

φ(Y )− φ(Y ′) = φ(Y − Y ′) ∈ h2,

so Y − Y ′ ∈ h1, hence Y + h1 = Y ′ + h1. Thus φ̃ is one-to-one.

Now consider Ỹ + h2 ∈ g/h2. The map φ|h1
: h1 → h2 is an isomorphism, thus

there exists a Y ∈ h1 such that Ỹ = φ(Y ). Consequently,

φ̃(Y + h1) = φ(Y ) + h2 = Ỹ + h2.

Thus φ̃ is onto and so a bijection. Therefore φ̃ : g/h1 → g/h2 is a g-equivariant
isomorphism. �

Definition 9.3. The Lie algebra pair (g, h) admits a reductive complement if there
is a subspace m of g such that g = m + h (vector space direct sum), where

[m, h] ⊆ m.

In this case, the Lie algebra pair (g, h) is said to be a reductive pair.
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Definition 9.4. The Lie algebra pair (g, h) is said to be a symmetric pair if there
exists a reductive complement m of h in g such that

[m,m] ⊆ h.

In this case, m is sometimes called a symmetric complement.

Definition 9.5. For any Lie algebra g, a subset m is said to be an ideal of g if

[m, g] ⊆ m.

In particular, if the Lie algebra pair (g, h) admits a compliment m such that m
is an ideal of g, then m is a reductive compliment of h in g.

Proposition 9.2. If the Lie algebra pair (g, h) admits a reductive complement m,
then there exists a vector space isomorphism ψ : g/h→ m which is invariant under
the adh action.

Proof. Assume (g, h) is a reductive Lie algebra pair. By definition there exists
an m such that g = m + h and [h,m] ⊆ m. The complement m = g − h has
the same dimension as g/h, so they must be isomorphic as vector spaces. Let
{Y1 + h, . . . , Yk + h} be basis for g/h. For i = 1, . . . , k

Yi + h 6= h =⇒ Yi /∈ h.

Therefore Yi ∈ m for all i. If the set {Y1, . . . , Yk} did not form a basis for m, then
the Yi would be linearly dependant. If this were the case, then there would exist
scalars αi ∈ R such that

αiYi = 0 =⇒ (αiYi) + h = h =⇒ αi(Yi + h) = h,

a contradiction of the fact that the Yi+h formed a basis for g/h. Thus {Y1, . . . , Yk}
forms a basis for m.

Define ψ : g/h→ m on the basis elements:

ψ(Yi + h) = Yi

for i = 1, . . . , k. This is a map defined on the bases, hence it is a vector space
isomorphism. It only remains to show that ψ preserves the action of h by ad. Let
X ∈ h and Y + h ∈ g/h. Using the previously given basis for g/h,

Y + h = ai(Yi + h) = (aiYi) + h

for some set of ai ∈ R. Thus

ad(X)(Y + h) = ad(X)
(
(aiYi) + h

)
= ad(X)(aiYi) + h

= [X, aiYi] + h

= ai[X,Yi] + h

By assumption, however, X ∈ h and Yi ∈ m implies that [X,Yi] ∈ m. It follows
that for each i = 1, . . . , k

[X,Yi] = bjiYj
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for some set of bji ∈ R. It follows that

ψ
(

ad(X)(Y + h)
)

= ψ
(
ai[X,Yi] + h

)
= ψ

(
ai(bjiYj) + h

)
= ψ

(
aibji (Yj + h)

)
= aibji

(
ψ(Yj + h)

)
= aibji (Yj).

Using some straightforward properties of linear algebra,

aibji (Yj) = ai(bjiYj) = ai[X,Yi] = [X, aiYi] = [X,Y ] = ad(X)(Y ).

Therefore
ψ
(

ad(X)(Y + h)
)

= ad(X)(Y )

as required. �

Loosely speaking, this result shows g/h can be identified with m, if m is a reduc-
tive complement of h in g.

Definition 9.6. Given an inner product, η, on a vector space V , the restriction to
the subspace U , η|U , is non-degenerate if u1 ∈ U and η(u1, u2) = 0 for all u2 ∈ U
implies that u1 = 0.

Proposition 9.3. Let g be a Lie algebra with subalgebra h. If η is an adh-invariant
inner product on g and η|h is non-degenerate, then (g, h) admits a reductive com-
plement m such that η|m is non-degenerate.

Proof. Assume that the dimensions of g and h are n and k, respectively. If either
k = 0 or k = n, then the proposition is trivially true. It can therefore be assumed
that 0 < k < n. Let m be the complement of h in g. By hypothesis, η is non-
degenerate on g. It follows that a basis {X1, . . . , Xn} for g can be constructed so
that

η(Xi, Xj) = ±δij
for i, j ∈ {1, . . . , n}. Similarly, η|h is non-degenerate, so a basis {Y1, . . . , Yk} can
be constructed for h such that

η(Yi, Yj) = ±δij
for i, j ∈ {1, . . . , k}. Consider Y1 ∈ g. The set {X1, . . . , Xn} is basis for g, so

Y1 = α1
1X1 + · · ·+ αn1Xn

where α1
1, . . . , α

n
1 ∈ R and αj1 6= 0 for at least one j = 1, . . . , n. Assume without

loss of generality that α1
1 6= 0. Then

X1 =
1
α1

1

Y1 −
α2

1

α1
1

X2 − · · · −
αn1
α1

1

Xn

and so X1 ∈ span{Y1, X2, . . . , Xn}. This set is linearly independent, else

Y1 = α2
1X2 + · · ·+ αn1Xn,

contradicting the assumption that α1
1 6= 0. It follows that {Y1, X2, . . . , Xn} is a

basis for g.
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Now consider Y2 ∈ g. Using the newly formed basis,

Y2 = α1
2Y1 + α2

2X2 + · · ·+ αn2Xn

where α1
2, . . . , α

n
2 ∈ R and αj2 6= 0 for at least one j = 1, . . . , n. If αj2 = 0 for

all j > 1, then Y2 = α1
2Y1, contradicting the assumption that {Y1, . . . , Yk} form

a linearly independent set, hence αj2 6= 0 for at least one j = 2, . . . , n. Assume
without loss of generality that α2

2 6= 0. Then

X2 = −α
1
2

α2
2

Y1 +
1
α2

2

Y2 −
α3

2

α2
2

X3 − · · · −
αn2
α2

2

Xn

and so X2 ∈ span{Y1, Y2, X3 . . . , Xn}. As before, this set is linearly independent
and it follows that {Y1, Y2, X3, . . . , Xn} is a basis for g.

This process can be continued inductively, forming the basis {Y1, . . . , Yk, Xk+1, . . . , Xn}
for g. This basis has the property that η(Yi, Yj) = ±δij for i, j ∈ {1, . . . , k}
and η(Xi, Xj) = ±δij for i, j ∈ {k + 1, . . . , n}. In particular, η(Xi, Xj) 6= 0 for
i, j ∈ {k+ 1, . . . , n}, so an orthogonal basis for g can be formed using the Graham-
Schmidt Method by letting

Yi := Xi −
i−1∑
j=1

η(Xi, Yj)
η(Yj , Yj)

Yj (20)

for i = k + 1, . . . , n. This provides a basis {Y1, . . . , Yn} for g such that h =
span{Y1, . . . , Yk}, m = span{Yk+1, . . . , Yn}, and η(Yi, Yj) = ±δij for i, j ∈ {1, . . . , n}.
Specifically, g = h + m and η(Yi, Yj) = ±δij for i, j ∈ {k + 1, . . . , n} (i.e. η|m is
non-degenerate).

It only remains to show m is a reductive complement of h in g, i.e. that [h,m] ⊆ m.
First, note from the construction of the basis {Y1, . . . , Yn} that for any Yi in the
basis for h, η(Yi, Yj) = 0 for j = k+ 1, . . . , n, or all Yj in the basis for m. Thus any
vector in h is orthogonal to any vector not in h; hence

m = span{Yk+1, . . . , Yn} = h⊥.

Second, the inner-product η is adh-invariant, so from Definition 8.2, for any
X ∈ h and Y,Z ∈ g

η(X · Y, Z) + η(Y,X · Z) = η
(

ad(X)(Y ), Z
)

+ η
(
Y, ad(X)(Z)

)
= 0,

Proposition 8.5 then implies

η
(
[X,Y ], Z

)
+
(
Y, [X,Z]

)
= 0. (21)

This equation holds for any Y, Z ∈ g, so let Y be any element in m and Z any
element in h. X and Z are both elements of the Lie subalgebra h, therefore the
bracket [X,Z] remains in h. The compliment of h is orthogonal to h, so Y ∈ m
implies that η

(
Y, [X,Z]

)
= 0. In this case, Equation 21 becomes

η
(
[X,Y ], Z

)
= 0,

where Z is any element of h. By the non-degeneracy assumption on η|h,

[X,Y ] ∈ h⊥ = m.
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Therefore if X ∈ h and Y ∈ m, then [X,Y ] ∈ m, as required. �

10. The fundamental theorem of invariant metrics on a homogeneous
space

The ideas of the preceding sections lead to the following theorem:

Theorem 10.1. There is a one-to-one correspondence between invariant metrics
γ on a homogeneous space M and invariant inner products η on a vector space
g/h, where (g, h) is a suitably chosen Lie algebra pair. Furthermore, if h admits a
reductive complement m, then g/h can be replaced with m in the previous sentence.
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