HOMEWORK 1
DUE 8 APRIL 2016

1. Let C be a category, and let U_1 and U_2 be objects in C. Suppose U_1 and U_2 are both universally attracting. Show that there is a unique isomorphism $i : U_1 \rightarrow U_2$. (For future reference, the same is true if they’re both universally repelling, with the same proof.)

2. Remember that by “ring” we mean “ring with 1.” Let R be the category of rings. If R_1 and R_2 are rings, then let $R_1 \times R_2$ be their set-theoretic product, which can also be given the natural structure of a ring.
 (a) Show that $R_1 \times R_2$ is the product of R_1 and R_2 in R.
 (b) Show that $R_1 \times R_2 \simeq R_1 \oplus R_2$ is not the coproduct of R_1 and R_2 in R.
 Note: We’ll see later that coproducts do exist in the category R_{comm} of commutative rings; they’re called tensor products.

3. Let C be a category. Let X,Y,S be objects in C and $f : X \rightarrow S, g : Y \rightarrow S$ be morphisms in C. A fiber product of f and g in C (or by abuse of terminology, fiber product of X and Y over S) is an object Z in C together with morphisms $\pi_1 : Z \rightarrow X$ and $\pi_2 : Z \rightarrow Y$ such that
 (i) $g \circ \pi_2 = f \circ \pi_1$;
 (ii) for any object A in C and any morphisms $q_1 : A \rightarrow X, q_2 : A \rightarrow Y$ such that $g \circ q_2 = f \circ q_1$ there exists a unique morphism $u : A \rightarrow Z$ such that the diagram

\[
\begin{array}{c}
A \\
q_2 \downarrow \quad q_1 \downarrow \\
Z \\
\pi_2 \downarrow \quad \pi_1 \\
X \\
\downarrow f \\
Y \\
\downarrow g \\
S
\end{array}
\]

is commutative.
Show that, if it exists, the fiber product Z of f and g is unique up to isomorphism. (The fiber product is denoted $X \times_S Y$.)

4. Let B be an abelian group. Let F_B be the functor from the category of abelian groups to itself defined for an abelian group A by

$$F_B(A) = \text{Hom}(B, A) = \{f : B \to A; f \text{ is a group homomorphism}\}.$$

(a) Show that F_B is a covariant functor.

(b) Show that F_B is left exact.

(c) Find a nontrivial abelian group B such that F_B is exact.

(d) Is F_B always exact? Prove or find a counterexample.

5. Let G be a group. Denote $\mathbb{Z}[G]$ the free abelian group (or free \mathbb{Z}-module) on the set G. That is,

$$\mathbb{Z}[G] = \left\{ \sum_{\sigma \in G} a_\sigma \sigma; a_\sigma \in \mathbb{Z} \forall \sigma \in G \text{ and all but finitely many } a_\sigma \text{'s are equal to zero} \right\}$$

with the natural addition.

(a) Show that $\mathbb{Z}[G]$ becomes a ring with the multiplication

$$\left(\sum_{\sigma \in G} a_\sigma \sigma \right) \cdot \left(\sum_{\tau \in G} b_\tau \tau \right) = \sum_{\sigma \in G} \left(\sum_{\sigma' \tau = \sigma} a_{\sigma'} b_\tau \right) \sigma.$$

(Do show that the multiplication is well-defined.)

(b) What is the multiplicative identity element in this ring?

(c) Show that the set R of finitely supported functions $f : G \to \mathbb{Z}$ becomes a ring under the usual function addition and multiplication given by convolution. That is, the elements of R are maps of sets $f : G \to \mathbb{Z}$ with the property that $f(\sigma) = 0$ for all but finitely many $\sigma \in G$; the addition is given by $(f + g)(\sigma) = f(\sigma) + g(\sigma)$ for all $\sigma \in G$; and the multiplication is given by

$$(f * g)(\sigma) = \sum_{\tau \in G} f(\tau)g(\tau^{-1}\sigma).$$

(d) Show that $\mathbb{Z}[G]$ is naturally isomorphic to R (as rings).