Part I.

1. Let R be a ring and $F : M \to N$ a homomorphism of R-modules. Prove that the following are equivalent.
 (a) f is surjective.
 (b) $f_p : M_p \to N_p$ is surjective for each prime ideal p of R.
 (c) $f_m : M_m \to N_m$ is surjective for each maximal ideal m of R.

2. Let p be a prime number. For $n \geq m$ let $f_{nm} : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$ be the canonical projection, i.e. $f_{nm}(a \mod p^n) = a \mod p^m$.
 (a) Show that $\{\mathbb{Z}/p^n\mathbb{Z}\}$ with homomorphisms f_{nm} forms an inverse system of commutative rings. Let \mathbb{Z}_p denote $\lim_{\leftarrow} \mathbb{Z}/p^n\mathbb{Z}
 (b) Find the canonical image of \mathbb{Z} in \mathbb{Z}_p and show that \mathbb{Z}_p is an integral domain.
 (c) Show that \mathbb{Z}_p is a local ring and an principal ideal domain.
 The ring \mathbb{Z}_p is called the ring of p-adic integers.

3. Let p be a prime and let R be the set of formal power series in p:
 $$ R = \left\{ \sum_{n=0}^{\infty} a_n p^n : a_n = 0, 1, \ldots, p-1 \right\}. $$
 (a) Show that R is a commutative ring under the addition and multiplication of power series (do show that multiplication makes sense!).
 (b) Show that \mathbb{Z}_p is naturally isomorphic to R.

Bonus Let \mathbb{N} be the set of positive integers ordered by divisibility. Observe that
$$ \{\mathbb{Z}/n\mathbb{Z}\}_{n \in \mathbb{N}} $$
forms an inverse system of commutative rings with the canonical homomorphisms $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ for $m \mid n$. Let $\hat{\mathbb{Z}} = \lim_{\leftarrow} \mathbb{Z}/n\mathbb{Z}$. Show that
$$ \hat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p. $$

Part II. From Atiyah-Macdonald

Chapter 5: 1, 3, 4, 8, 9