Math 241A: Functional Analysis

Homework 1

due in class Monday, October 27th

Unless otherwise specified, all vector spaces are considered over \mathbb{C}.

1. Let \mathcal{H} be a Hilbert space and $\alpha \in \mathbb{C}$ such that $\alpha^{2} \neq 1$ and $\alpha^{N}=1$, for an integer $N>2$. Prove that $\langle\xi, \eta\rangle=\frac{1}{N} \sum_{n=1}^{N}\left\|\xi+\alpha^{n} \eta\right\|^{2} \alpha^{n}$, for all $\xi, \eta \in \mathcal{H}$.
2. Let \mathcal{H} be a Hilbert space such that the closed unit ball $\{\xi \in \mathcal{H} \mid\|\xi\| \leqslant 1\}$ is compact. Prove that \mathcal{H} is finite dimensional.
3. Let \mathcal{H} be an infinite dimensional Hilbert space. Prove that there does not exist a countable set $S \subset \mathcal{H}$ which spans \mathcal{H} (as a vector space).
4. Let \mathcal{H} and \mathcal{K} be two Hilbert spaces. Prove that $\operatorname{dim}(\mathcal{H})=\operatorname{dim}(\mathcal{K})$ if and only if there a linear surjective map $U: \mathcal{H} \rightarrow \mathcal{K}$ such that $\|U(\xi)\|=\|\xi\|$, for all $\xi \in \mathcal{H}$ (such a map U is called a unitary).
5. Let $(X,\|\cdot\|)$ be a normed vector space over \mathbb{R} which satisfies the parallelogram law: $\|\xi+\eta\|^{2}+\|\xi-\eta\|^{2}=2\left(\|\xi\|^{2}+\|\eta\|^{2}\right)$, for all $\xi, \eta \in X$. Prove that there is an inner product $\langle.,\rangle:. X \times X \rightarrow \mathbb{R}$ such that $\|\xi\|^{2}=\langle\xi, \xi\rangle$, for all $\xi \in X$.
6. Let X and Y be normed spaces and $T: X \rightarrow Y$ be a linear map. Prove that T is continuous if and only if there is a constant $c>0$ such that $\|T(\xi)\| \leqslant c\|\xi\|$, for all $\xi \in X$.
7. Let (X, μ) be a σ-finite measure space, $\phi \in L^{\infty}(X, \mu)$ and $1 \leqslant p \leqslant+\infty$. Define $M_{\phi}: L^{p}(X, \mu) \rightarrow L^{p}(X, \mu)$ by letting $M_{\phi}(f)=\phi f$, for all $f \in L^{p}(X, \mu)$. Prove that $M_{\phi} \in B\left(L^{p}(X, \mu)\right)$ and $\left\|M_{\phi}\right\|=\|\phi\|_{\infty}$ (i.e. the essential supremum of ϕ).
8. Let X and Y be Banach spaces, and $T \in B(X, Y)$. Prove that there is a constant $c>0$ such that $\|T(\xi)\| \geqslant c\|\xi\|$, for all $\xi \in X$, if and only if $\operatorname{ker}(T)=\{0\}$ and $\operatorname{ran}(T)$ is closed.
9. Let $1 \leqslant p<\infty$ and let ℓ^{p} denote the Banach space of ℓ^{p}-summable functions $f: \mathbb{N} \rightarrow \mathbb{C}$, i.e. such that $\|f\|_{p}:=\left(\sum_{n \in \mathbb{N}}|f(n)|^{p}\right)^{\frac{1}{p}}$ is finite. Let $T: \ell^{p} \rightarrow \ell^{p}$ be a linear map. Assume that there is an infinite matrix $\left(\alpha_{i, j}\right)_{i, j=1}^{\infty}$ of complex numbers such that $(T f)(i)=\sum_{j=1}^{\infty} \alpha_{i, j} f(j)$, for all $f \in \ell^{p}$ and every $i \geqslant 1$. Prove that $T \in B\left(\ell^{p}\right)$.
10. Let X be a separable normed space. Prove that the unit ball of $X^{*}\left(\left\{\phi \in X^{*} \mid\|\phi\| \leqslant 1\right\}\right)$ is a separable metrizable space with the weak*-topology.
11. Let $X=L^{\infty}([0,1], \lambda)$, where λ is the Lebesgue measure on $[0,1]$. For $n \geqslant 1$, let $\phi_{n} \in X^{*}$ be given by $\phi_{n}(f)=\frac{1}{n} \int_{0}^{\frac{1}{n}} f \mathrm{~d} \lambda$, for any $f \in L^{\infty}([0,1], \lambda)$. Note that $\left\|\phi_{n}\right\| \leqslant 1$, for all $n \geqslant 1$, and let $\phi \in X^{*}$ be any point in the weak*-closure of the sequence $\left\{\phi_{n}\right\}_{n \geqslant 1}$. Prove that ϕ is not of the form ϕ_{g}, for any $g \in L^{1}([0,1], \lambda)$, where $\phi_{g}(f)=\int_{0}^{1} f g d \lambda$.
