Math 241A: Functional Analysis

Homework 1

due in class Monday, October 27th

Unless otherwise specified, all vector spaces are considered over \mathbb{C} .

1. Let \mathcal{H} be a Hilbert space and $\alpha \in \mathbb{C}$ such that $\alpha^2 \neq 1$ and $\alpha^N = 1$, for an integer N > 2. Prove that $\langle \xi, \eta \rangle = \frac{1}{N} \sum_{n=1}^{N} \|\xi + \alpha^n \eta\|^2 \alpha^n$, for all $\xi, \eta \in \mathcal{H}$.

2. Let \mathcal{H} be a Hilbert space such that the *closed unit ball* $\{\xi \in \mathcal{H} \mid ||\xi|| \leq 1\}$ is compact. Prove that \mathcal{H} is finite dimensional.

3. Let \mathcal{H} be an infinite dimensional Hilbert space. Prove that there does not exist a countable set $S \subset \mathcal{H}$ which spans \mathcal{H} (as a vector space).

4. Let \mathcal{H} and \mathcal{K} be two Hilbert spaces. Prove that $\dim(\mathcal{H}) = \dim(\mathcal{K})$ if and only if there a linear surjective map $U : \mathcal{H} \to \mathcal{K}$ such that $||U(\xi)|| = ||\xi||$, for all $\xi \in \mathcal{H}$ (such a map U is called a *unitary*).

5. Let $(X, \|.\|)$ be a normed vector space over \mathbb{R} which satisfies the *parallelogram law*: $\|\xi + \eta\|^2 + \|\xi - \eta\|^2 = 2(\|\xi\|^2 + \|\eta\|^2)$, for all $\xi, \eta \in X$. Prove that there is an inner product $\langle ., . \rangle : X \times X \to \mathbb{R}$ such that $\|\xi\|^2 = \langle \xi, \xi \rangle$, for all $\xi \in X$.

6. Let X and Y be normed spaces and $T : X \to Y$ be a linear map. Prove that T is continuous if and only if there is a constant c > 0 such that $||T(\xi)|| \leq c ||\xi||$, for all $\xi \in X$.

7. Let (X,μ) be a σ -finite measure space, $\phi \in L^{\infty}(X,\mu)$ and $1 \leq p \leq +\infty$. Define $M_{\phi} : L^{p}(X,\mu) \to L^{p}(X,\mu)$ by letting $M_{\phi}(f) = \phi f$, for all $f \in L^{p}(X,\mu)$. Prove that $M_{\phi} \in B(L^{p}(X,\mu))$ and $||M_{\phi}|| = ||\phi||_{\infty}$ (i.e. the essential supremum of ϕ).

8. Let X and Y be Banach spaces, and $T \in B(X, Y)$. Prove that there is a constant c > 0 such that $||T(\xi)|| \ge c ||\xi||$, for all $\xi \in X$, if and only if ker $(T) = \{0\}$ and ran(T) is closed.

9. Let $1 \leq p < \infty$ and let ℓ^p denote the Banach space of ℓ^p -summable functions $f : \mathbb{N} \to \mathbb{C}$, i.e. such that $||f||_p := (\sum_{n \in \mathbb{N}} |f(n)|^p)^{\frac{1}{p}}$ is finite. Let $T : \ell^p \to \ell^p$ be a linear map. Assume that there is an infinite matrix $(\alpha_{i,j})_{i,j=1}^{\infty}$ of complex numbers such that $(Tf)(i) = \sum_{j=1}^{\infty} \alpha_{i,j}f(j)$, for all $f \in \ell^p$ and every $i \geq 1$. Prove that $T \in B(\ell^p)$.

10. Let X be a separable normed space. Prove that the unit ball of X^* ({ $\phi \in X^* \mid \|\phi\| \leq 1$ }) is a separable metrizable space with the weak*-topology.

11. Let $X = L^{\infty}([0,1],\lambda)$, where λ is the Lebesgue measure on [0,1]. For $n \ge 1$, let $\phi_n \in X^*$ be given by $\phi_n(f) = \frac{1}{n} \int_0^{\frac{1}{n}} f \, d\lambda$, for any $f \in L^{\infty}([0,1],\lambda)$. Note that $\|\phi_n\| \le 1$, for all $n \ge 1$, and let $\phi \in X^*$ be any point in the weak*-closure of the sequence $\{\phi_n\}_{n\ge 1}$. Prove that ϕ is not of the form ϕ_g , for any $g \in L^1([0,1],\lambda)$, where $\phi_g(f) = \int_0^1 fg \, d\lambda$.