Math 247A Homework 1

Instructions: attempt at least $\mathbf{5}$ problems and turn them in during class by January 30.
In the problems below, H denotes a complex Hilbert space.
Problem 0.1. Let $T \in \mathbb{B}(H)$ and denote by $T^{*} \in \mathbb{B}(H)$ its adjoint.
Prove that $\left\|T^{*}\right\|=\|T\|$ and $\left\|T^{*} T\right\|=\|T\|^{2}$.
Problem 0.2. Let $\left(T_{n}\right) \subset \mathbb{B}(H)$ be a sequence of unitary operators. Assume that $T_{n} \rightarrow T$ (WOT), where $T \in \mathbb{B}(H)$ is a unitary operator.
Prove that $T_{n} \rightarrow T$ (SOT).
Problem 0.3. Assume that H is infinite dimensional and separable ($\Leftrightarrow H$ has a countable infinite orthonormal basis).
Give an example of a sequence of unitaries $\left(T_{n}\right)$ which converge in the WOT but not the SOT.
Problem 0.4. Let $\mathcal{B}=\{T \in \mathbb{B}(H) \mid\|T\| \leq 1\}$ denote the closed unit ball of $\mathbb{B}(H)$.
Prove that \mathcal{B} is compact in the WOT.
Problem 0.5. Let $B \subset \mathbb{B}(H)$ be a set of operators such that $T^{*} \in B$, for every $T \in B$.
Prove that $B^{\prime}:=\{T \in \mathbb{B}(H) \mid T S=S T$, for every $S \in B\}$ is a von Neumann algebra.
Problem 0.6. Let I be a set. Define a *-homomorphism $\pi: \ell^{\infty}(I) \rightarrow \mathbb{B}\left(\ell^{2}(I)\right)$ by the formula $\pi(f)(g)(i)=f(i) g(i)$, for all $i \in I, f \in \ell^{\infty}(I)$ and $g \in \ell^{2}(I)$.
Prove that $\pi\left(\ell^{\infty}(I)\right)^{\prime}=\pi\left(\ell^{\infty}(I)\right)$.
Problem 0.7. Let Γ be a finite abelian group and put $n=|\Gamma|$.
Prove that $L(\Gamma)$ is $*$-isomorphic to $\ell^{\infty}(\{1,2, \ldots, n\})$.
Problem 0.8. An operator $T \in \mathbb{B}(H)$ is called positive if $T=T^{*}$ and $\sigma(T) \subset[0, \infty)$.
Prove that an operator $T \in \mathbb{B}(H)$ is positive if and only if $\langle T \xi, \xi\rangle \geqslant 0$, for all $\xi \in H$.
Problem 0.9. Let $A \subset \mathbb{B}(H)$ be a C^{*}-algebra.
(1) Prove that every self-adjoint element $a \in A$ is a linear combination of two unitary elements of A.
(2) Prove that every element $a \in A$ is a linear combination of four unitary elements of A.

Problem 0.10. (the Cauchy-Schwarz inequality) Let A be a C^{*}-algebra and $\varphi: A \rightarrow \mathbb{C}$ be a linear functional. Assume that φ is positive, that is, $\varphi\left(x^{*} x\right) \geq 0$, for all $x \in A$.
Prove that $\left|\varphi\left(y^{*} x\right)\right|^{2} \leqslant \varphi\left(x^{*} x\right) \varphi\left(y^{*} y\right)$, for all $x, y \in A$.

