Math 247A Homework 2

Instructions: this homework is **optional** and can be turned in during class by **March 13**.

In the problems below, H denotes a complex Hilbert space.

Problem 0.1. Let $M \subset \mathbb{B}(H)$ be a unital von Neumann algebra.

- (1) Prove that if $M \neq \{\alpha \cdot 1 \mid \alpha \in \mathbb{C}\}$, then there exists a projection $p \in M \setminus \{0, 1\}$.
- (2) Prove that a projection $p \in M$ is minimal if and only if $pMp = \{\alpha \cdot p \mid \alpha \in \mathbb{C}\}$. (A projection $p \in M$ is minimal if any projection $q \in M$ such that $q \leq p$ is equal to 0 or p.)

Problem 0.2. Prove that $\mathbb{B}(H)$ is a factor of type I.

Problem 0.3. Let M be a type II₁ factor and $\tau: M \to \mathbb{C}$ be a faithful normal tracial state.

Prove that two projections $p, q \in M$ are equivalent if and only if $\tau(p) = \tau(q)$.

Problem 0.4. Let M be a type II₁ factor and $\tau : M \to \mathbb{C}$ be a faithful normal tracial state.

- (1) Prove that there exists a projection $p \in M$ such that $\tau(p) = 1/2$.
- (2) Prove that there exists an injective unital *-homomorphism $\rho : \mathbb{M}_2(\mathbb{C}) \to M$.
- (3) Prove that there exists a unital *-homomorphism $\pi : R \to M$.

Problem 0.5. Let Γ be an infinite group and (Y, ν) be a non-trivial standard probability space. Define $(X, \mu) = (Y^{\Gamma}, \nu^{\otimes_{\Gamma}})$. Consider the Bernoulli action $\Gamma \curvearrowright (X, \mu)$ given by

 $g \cdot x = (x_{q^{-1}h})_{h \in \Gamma}$, for every $g \in \Gamma$ and $x = (x_h)_{h \in \Gamma} \in X$.

Prove that for any measurable sets $Y, Z \subset X$ we have that $\lim_{g \to \infty} \mu(gY \cap Z) = \mu(Y)\mu(Z)$.

Problem 0.6. Let Γ_1 and Γ_2 be any countable groups such that $|\Gamma_1| > 1$ and $|\Gamma_2| > 2$. Prove that the free product group $\Gamma = \Gamma_1 * \Gamma_2$ is icc.

Problem 0.7. Let Γ_1 and Γ_2 be any countable groups such that $|\Gamma_1| > 1$ and $|\Gamma_2| > 2$. Prove that the free product group $\Gamma = \Gamma_1 * \Gamma_2$ is not amenable.

Problem 0.8. Let Γ be an icc countable group and $\Gamma \curvearrowright (X, \mu)$ be a pmp action. Prove that if the action $\Gamma \curvearrowright (X, \mu)$ is ergodic, then $L^{\infty}(X) \rtimes \Gamma$ is a factor.