Math 140C: Final Exam
 Foundations of Real Analysis

- You have 3 hours. No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- State carefully the hypothesis and conclusion of any result that you use.
- You may not use homework problems (without proof) in your solutions.

1. (10 points)
(a) (3 points) Define what it means for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ to be differentiable at $(0,0)$.
(b) (7 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that the partial derivatives $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist and satisfy that $\left|\frac{\partial f}{\partial x}(x, y)\right| \leqslant|x|$ and $\left|\frac{\partial f}{\partial y}(x, y)\right| \leqslant|y|$, for all $(x, y) \in \mathbb{R}^{2}$.
Prove that f is differentiable at $(0,0)$ and $f^{\prime}(0,0)=0$.
2. (10 points) Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f(x, y, z)=x^{5} y^{4}+y^{3} z^{2}+x-3$. Define $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by letting $F(x, y, z)=(f(x, y, z), y, z)$.
(a) (4 points) Prove that there exists an open set $U \subset \mathbb{R}^{2}$ which contains $(1,1)$ and a differentiable function $g: U \rightarrow \mathbb{R}$ such that $g(1,1)=1$ and $f(g(y, z), y, z)=0$, for all $(y, z) \in U$.
(b) (2 points) Find the partial derivatives $\frac{\partial g}{\partial y}(1,1)$ and $\frac{\partial g}{\partial z}(1,1)$.
(c) (4 points) Prove that $F(V)$ is an open subset of \mathbb{R}^{3}, for every open set $V \subset \mathbb{R}^{3}$.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that the first-order partial derivatives $\frac{\partial f}{\partial x}(x, y)$, $\frac{\partial f}{\partial y}(x, y)$, and the second-order partial derivative $\frac{\partial^{2} f}{\partial x \partial y}(x, y)$ exist at every $(x, y) \in \mathbb{R}^{2}$.
(a) (5 points) Assume that $\frac{\partial^{2} f}{\partial x \partial y}$ is continuous at $(0,0)$. Prove that

$$
\lim _{t \rightarrow 0} \frac{f\left(t, t^{2}\right)-f(t, 0)-f\left(0, t^{2}\right)+f(0,0)}{t^{3}}=\frac{\partial^{2} f}{\partial x \partial y}(0,0) .
$$

(b) (5 points) Assume that $\frac{\partial^{2} f}{\partial x \partial y}(x, y)=0$, for every $(x, y) \in \mathbb{R}^{2}$. Prove that there exist two differentiable functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)+h(y)$, for every $(x, y) \in \mathbb{R}^{2}$.
4. (10 points) Consider the measurable space $X=\mathbb{R}$ in which the σ-ring \mathscr{M} is the set of all Lebesgue measurable subsets of \mathbb{R}.
(a) (3 points) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Prove that f is measurable.
(b) (3 points) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function. Prove that the derivative function $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is measurable.
(c) (4 points) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a monotonically increasing function. Prove that f is measurable.
5. (10 points)
(a) (5 points) Let $A=\cup_{n=1}^{\infty}\left[n, n+\frac{1}{n^{2}}\right]$.

Prove that if a function $f: A \rightarrow \mathbb{R}$ satisfies $f \in \mathscr{L}^{2}$ on A, then $f \in \mathscr{L}$ on A.
(b) (5 points) Let $B=\cup_{n=1}^{\infty}\left[n, n+\frac{1}{\sqrt{n}}\right]$.

Give an example of a function $f: B \rightarrow \mathbb{R}$ such that $f \in \mathscr{L}^{2}$ on B and $f \notin \mathscr{L}$ on B.
6. (10 points) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function such that $f \in \mathscr{L}$ on $[a, b]$. Define $F:[a, b] \rightarrow \mathbb{R}$ by letting $F(x)=\int_{a}^{x} f(t) d t$.
(a) (5 points) Prove that F is continuous on $[a, b]$.
(b) (5 points) Assume that f is Riemann integrable on $[a, b]$. Prove that $F^{\prime}(x)$ exists and $F^{\prime}(x)=f(x)$, almost everywhere on $[a, b]$.
7. (10 points) Let $f:[0,2] \rightarrow \mathbb{R}$ be a function such that $f \in \mathscr{L}^{2}$ on $[0,2]$. Let $g:[0,1] \rightarrow \mathbb{R}$ be a function such that $g \in \mathscr{L}^{2}$ on $[0,1]$. Let $A \subset[0,1]$ be a Lebesgue measurable set such that $m(A)>0$, where m denotes the Lebesgue measure. For $t \in \mathbb{R}$, let $A+t=\{x+t \mid x \in A\}$.
(a) (4 points) Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f\left(x+\frac{1}{n}\right)-f(x)\right|^{2} \mathrm{~d} x=0$.
(b) (3 points) Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x+\frac{1}{n}\right) g(x) \mathrm{d} x=\int_{0}^{1} f(x) g(x) \mathrm{d} x$.
(c) (3 points) Prove that there exists $n \geqslant 1$ such that $\left(A+\frac{1}{n}\right) \cap A \neq \emptyset$.
8. (10 points) Let X be a measurable space, in which \mathscr{M} is the σ-ring of measurable sets and μ is the measure. Let $f: X \rightarrow \mathbb{R}$ be a function such that $f \in \mathscr{L}(\mu)$. Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be a sequence of sets such that $A_{n} \in \mathscr{M}$, for all $n \geqslant 1$.
(a) (2 points) Prove that if $A \in \mathscr{M}$, then $\int_{A} f \mathrm{~d} \mu=\int_{X} f \mathbf{1}_{A} \mathrm{~d} \mu$.
(b) (3 points) Assume that $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<+\infty$. Prove that $\lim _{n \rightarrow \infty} \mathbf{1}_{A_{n}}(x)=0$, almost everywhere on X.
(c) (3 points) Assume that $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<+\infty$. Prove that $\lim _{n \rightarrow \infty} \int_{A_{n}} f \mathrm{~d} \mu=0$.
(d) (2 points) Assume that $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=0$. Prove that $\lim _{n \rightarrow \infty} \int_{A_{n}} f \mathrm{~d} \mu=0$.

Do not write on this page.

1	
2	out of 10 points
3	out of 10 points
4	out of 10 points
5	out of 10 points
6	out of 10 points
7	out of 10 points
8	out of 10 points
Total	out of 10 points

