Math 140C: Final Exam Foundations of Real Analysis

- You have 3 hours. No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- State carefully the hypothesis and conclusion of any result that you use.
- You may not use homework problems (without proof) in your solutions.

1. (10 points)

(a) (3 points) Define what it means for a function $f : \mathbb{R}^2 \to \mathbb{R}$ to be differentiable at (0,0). (b) (7 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the partial derivatives $\frac{\partial f}{\partial x}(x,y)$ and $\frac{\partial f}{\partial y}(x,y)$ exist and satisfy that $|\frac{\partial f}{\partial x}(x,y)| \leq |x|$ and $|\frac{\partial f}{\partial y}(x,y)| \leq |y|$, for all $(x,y) \in \mathbb{R}^2$. Prove that f is differentiable at (0,0) and f'(0,0) = 0.

2. (10 points) Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y, z) = x^5 y^4 + y^3 z^2 + x - 3$. Define $F : \mathbb{R}^3 \to \mathbb{R}^3$ by letting F(x, y, z) = (f(x, y, z), y, z).

(a) (4 points) Prove that there exists an open set $U \subset \mathbb{R}^2$ which contains (1,1) and a differentiable function $g: U \to \mathbb{R}$ such that g(1,1) = 1 and f(g(y,z), y, z) = 0, for all $(y,z) \in U$.

(b) (2 points) Find the partial derivatives $\frac{\partial g}{\partial y}(1,1)$ and $\frac{\partial g}{\partial z}(1,1)$.

(c) (4 points) Prove that F(V) is an open subset of \mathbb{R}^3 , for every open set $V \subset \mathbb{R}^3$.

3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the first-order partial derivatives $\frac{\partial f}{\partial x}(x,y)$, $\frac{\partial f}{\partial y}(x,y)$, and the second-order partial derivative $\frac{\partial^2 f}{\partial x \partial y}(x,y)$ exist at every $(x,y) \in \mathbb{R}^2$.

(a) (5 points) Assume that $\frac{\partial^2 f}{\partial x \partial y}$ is continuous at (0,0). Prove that

$$\lim_{t \to 0} \frac{f(t, t^2) - f(t, 0) - f(0, t^2) + f(0, 0)}{t^3} = \frac{\partial^2 f}{\partial x \partial y}(0, 0).$$

(b) (5 points) Assume that $\frac{\partial^2 f}{\partial x \partial y}(x, y) = 0$, for every $(x, y) \in \mathbb{R}^2$. Prove that there exist two differentiable functions $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ such that f(x, y) = g(x) + h(y), for every $(x, y) \in \mathbb{R}^2$.

4. (10 points) Consider the measurable space $X = \mathbb{R}$ in which the σ -ring \mathcal{M} is the set of all Lebesgue measurable subsets of \mathbb{R} .

(a) (3 points) Assume that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. Prove that f is measurable.

(b) (3 points) Assume that $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function. Prove that the derivative function $f' : \mathbb{R} \to \mathbb{R}$ is measurable.

(c) (4 points) Assume that $f : \mathbb{R} \to \mathbb{R}$ is a monotonically increasing function. Prove that f is measurable.

5. (10 points)

(a) (5 points) Let $A = \bigcup_{n=1}^{\infty} [n, n + \frac{1}{n^2}]$. Prove that if a function $f : A \to \mathbb{R}$ satisfies $f \in \mathscr{L}^2$ on A, then $f \in \mathscr{L}$ on A. (b) (5 points) Let $B = \bigcup_{n=1}^{\infty} [n, n + \frac{1}{\sqrt{n}}]$. Give an example of a function $f : B \to \mathbb{R}$ such that $f \in \mathscr{L}^2$ on B and $f \notin \mathscr{L}$ on B.

6. (10 points) Let $f : [a, b] \to \mathbb{R}$ be a function such that $f \in \mathscr{L}$ on [a, b]. Define $F : [a, b] \to \mathbb{R}$ by letting $F(x) = \int_{-a}^{x} f(t) dt$.

(a) (5 points) Prove that F is continuous on [a, b].

(b) (5 points) Assume that f is Riemann integrable on [a, b]. Prove that F'(x) exists and F'(x) = f(x), almost everywhere on [a, b].

7. (10 points) Let $f: [0,2] \to \mathbb{R}$ be a function such that $f \in \mathscr{L}^2$ on [0,2]. Let $g: [0,1] \to \mathbb{R}$ be a function such that $g \in \mathscr{L}^2$ on [0,1]. Let $A \subset [0,1]$ be a Lebesgue measurable set such that m(A) > 0, where *m* denotes the Lebesgue measure. For $t \in \mathbb{R}$, let $A+t = \{x+t | x \in A\}$.

- (a) (4 points) Prove that $\lim_{n \to \infty} \int_0^1 |f(x + \frac{1}{n}) f(x)|^2 dx = 0.$
- (b) (3 points) Prove that $\lim_{n \to \infty} \int_0^1 f(x + \frac{1}{n})g(x) \, \mathrm{d}x = \int_0^1 f(x)g(x) \, \mathrm{d}x.$
- (c) (3 points) Prove that there exists $n \ge 1$ such that $(A + \frac{1}{n}) \cap A \ne \emptyset$.

8. (10 points) Let X be a measurable space, in which \mathscr{M} is the σ -ring of measurable sets and μ is the measure. Let $f: X \to \mathbb{R}$ be a function such that $f \in \mathscr{L}(\mu)$. Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of sets such that $A_n \in \mathscr{M}$, for all $n \ge 1$.

(a) (2 points) Prove that if
$$A \in \mathcal{M}$$
, then $\int_A f \, d\mu = \int_X f \, \mathbf{1}_A \, d\mu$.

(b) (3 points) Assume that $\sum_{n=1}^{\infty} \mu(A_n) < +\infty$. Prove that $\lim_{n \to \infty} \mathbf{1}_{A_n}(x) = 0$, almost everywhere on X.

(c) (3 points) Assume that
$$\sum_{n=1}^{\infty} \mu(A_n) < +\infty$$
. Prove that $\lim_{n \to \infty} \int_{A_n} f \, d\mu = 0$.

(d) (2 points) Assume that $\lim_{n \to \infty} \mu(A_n) = 0$. Prove that $\lim_{n \to \infty} \int_{A_n} f \, d\mu = 0$.

Do not write on this page.

1	out of 10 points
2	out of 10 points
3	out of 10 points
4	out of 10 points
5	out of 10 points
6	out of 10 points
7	out of 10 points
8	out of 10 points
Total	out of 40 points