\qquad PID:

Math 140C: Midterm 1 Foundations of Real Analysis

- You have 1 hour and 20 minutes. No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- State carefully the hypothesis and conclusion of any result that you use.
- You may not use homework problems (without proof) in your solutions.

1. (10 points) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that the partial derivatives $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist and satisfy $\left|\frac{\partial f}{\partial x}(x, y)\right| \leqslant 1$ and $\left|\frac{\partial f}{\partial y}(x, y)\right| \leqslant 1$, for every $(x, y) \in \mathbb{R}^{2}$.
Prove that $|f(x, y)-f(0,0)| \leqslant|x|+|y|$, for every $(x, y) \in \mathbb{R}^{2}$.
2. (10 points) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=\left\{\begin{array}{l}\frac{x^{3} y}{x^{4}+y^{2}}, \quad \text { if } \quad(x, y) \neq(0,0) \\ 0, \quad \text { if } \quad(x, y)=(0,0)\end{array}\right.$
(a) (3 points) Prove that $|f(x, y)| \leqslant \frac{|x|}{2}$, for every $(x, y) \in \mathbb{R}^{2}$. Use this inequality to conclude that f is continuous at $(0,0)$.
(b) (3 points) Prove that $\lim _{t \rightarrow 0} \frac{f(t h)}{t}=0$, for every $h \in \mathbb{R}^{2}$.
(c) (2 points) Prove that $\lim _{t \rightarrow 0} \frac{f\left(t, t^{2}\right)}{t} \neq 0$.
(d) (2 points) Prove that f is not differentiable at $(0,0)$.
3. (10 points) Let $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuously differentiable mapping such that $\left\|\varphi^{\prime}(x)\right\|<\frac{1}{2}$, for every $x \in \mathbb{R}^{n}$. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $f(x)=x-\varphi(x)$, for every $x \in \mathbb{R}^{n}$.
(a) (3 points) Prove that there exists $x \in \mathbb{R}^{n}$ such that $f(x)=0$.
(b) (3 points) Prove that f is 1-1.
(c) (2 points) Prove that $f^{\prime}(x)$ is invertible, for every $x \in \mathbb{R}^{n}$.
(d) (2 points) Prove that $f\left(\mathbb{R}^{n}\right)$ is an open subset of \mathbb{R}^{n}.
4. (10 points) Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $f\left(x, y_{1}, y_{2}\right)=x y_{1} y_{2}+x^{5}-2$.
(a) (6 points) Prove that there exist an open set $U \subset \mathbb{R}^{2}$ which contains $(1,1)$ and a differentiable function $g: U \rightarrow \mathbb{R}$ such that $g(1,1)=1$ and $f\left(g\left(y_{1}, y_{2}\right), y_{1}, y_{2}\right)=0$, for all $\left(y_{1}, y_{2}\right) \in U$.
(b) (4 points) Find the partial derivatives $\frac{\partial g}{\partial y_{1}}(1,1)$ and $\frac{\partial g}{\partial y_{2}}(1,1)$.

Do not write on this page.

1	out of 10 points
2	out of 10 points
3	out of 10 points
4	out of 10 points
Total	out of 40 points

