Math 140C: Midterm 1 Foundations of Real Analysis

- You have 1 hour and 20 minutes. No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- State carefully the hypothesis and conclusion of any result that you use.
- You may not use homework problems (without proof) in your solutions.

1. (10 points) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that the partial derivatives $\frac{\partial f}{\partial x}(x, y)$ and $\frac{\partial f}{\partial y}(x, y)$ exist and satisfy $|\frac{\partial f}{\partial x}(x, y)| \leq 1$ and $|\frac{\partial f}{\partial y}(x, y)| \leq 1$, for every $(x, y) \in \mathbb{R}^2$. Prove that $|f(x, y) - f(0, 0)| \leq |x| + |y|$, for every $(x, y) \in \mathbb{R}^2$.

2. (10 points) Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = \begin{cases} \frac{x^3y}{x^4 + y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$

(a) (3 points) Prove that $|f(x,y)| \leq \frac{|x|}{2}$, for every $(x,y) \in \mathbb{R}^2$. Use this inequality to conclude that f is continuous at (0,0).

- (b) (3 points) Prove that $\lim_{t\to 0} \frac{f(th)}{t} = 0$, for every $h \in \mathbb{R}^2$.
- (c) (2 points) Prove that $\lim_{t \to 0} \frac{f(t, t^2)}{t} \neq 0.$
- (d) (2 points) Prove that f is not differentiable at (0, 0).

- **3.** (10 points) Let $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable mapping such that
- $\|\varphi'(x)\| < \frac{1}{2}$, for every $x \in \mathbb{R}^n$. Define $f : \mathbb{R}^n \to \mathbb{R}^n$ by $f(x) = x \varphi(x)$, for every $x \in \mathbb{R}^n$.
- (a) (3 points) Prove that there exists $x \in \mathbb{R}^n$ such that f(x) = 0.
- (b) (3 points) Prove that f is 1-1.
- (c) (2 points) Prove that f'(x) is invertible, for every $x \in \mathbb{R}^n$.
- (d) (2 points) Prove that $f(\mathbb{R}^n)$ is an open subset of \mathbb{R}^n .

4. (10 points) Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$ given by $f(x, y_1, y_2) = xy_1y_2 + x^5 - 2$.

(a) (6 points) Prove that there exist an open set $U \subset \mathbb{R}^2$ which contains (1,1) and a differentiable function $g: U \to \mathbb{R}$ such that g(1,1) = 1 and $f(g(y_1, y_2), y_1, y_2) = 0$, for all $(y_1, y_2) \in U$.

(b) (4 points) Find the partial derivatives $\frac{\partial g}{\partial y_1}(1,1)$ and $\frac{\partial g}{\partial y_2}(1,1)$.

Do not write on this page.

1	out of 10 points
2	out of 10 points
3	out of 10 points
4	out of 10 points
Total	out of 40 points