Math 142B : Additional practice problems

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1) If $f : [0, 1] \to \mathbb{R}$ is integrable on [0, 1], then f is continuous on [0, 1]. **T** / **F** (2) Let (f_n) be a sequence of integrable functions on [0, 1]. Assume that $\lim_{n\to\infty} f_n(x) = 0$, for every $x \in [0, 1]$. Then $\lim_{n\to\infty} \int_0^1 f_n = 0$. **T** / **F** (3) If f is a continuous function on \mathbb{R} , then there exists a function F which is differentiable on \mathbb{R} such that f = F'. **T** / **F**

2. (a) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Let $P = \{a = t_0 < t_1 < ... < t_n = b\}$ be a partition of [a, b]. Give the definition of the upper Darboux sum U(f, P) of f with respect to P. Give the definition of a Riemann sum of f associated with P.

(b) State the Intermediate Value Theorem for Integrals.

(c) State what it means for a function $f:[a,b] \to \mathbb{R}$ to be piecewise continuous.

3. Let $f:[0,1] \to \mathbb{R}$ be a function defined by $f(x) = \begin{cases} 0, & \text{if } x \in [0,1] \text{ is rational} \\ 2x, & \text{if } x \in [0,1] \text{ is irrational} \end{cases}$

Let $n \ge 1$ and consider the partition $P_n = \{0 = t_0 < t_1 < \dots < t_n = 1\}$, where $t_k = \frac{k}{n}$.

- (a) Calculate $L(f, P_n)$.
- (b) Calculate $U(f, P_n)$.
- (c) Prove that f is not integrable on [0, 1].

4. Let $f : [a, b] \to \mathbb{R}$ be an increasing function. Prove that $U(f, P) - L(f, P) \le \operatorname{mesh}(P) \cdot [f(b) - f(a)]$, for every partition P of [a, b].

5. Let f and g be continuous functions on [0, 1]. Assume that g(x) > 0, for every $x \in [0, 1]$.

Prove that there exists $x \in (0, 1)$ such that $\frac{f(x)}{g(x)} = \frac{\int_0^1 f}{\int_0^1 g}$.

6. Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $g(\mathbb{R}) = \mathbb{R}$ and g'(x) > 0, for all $x \in \mathbb{R}$. Let $G : \mathbb{R} \to \mathbb{R}$ be given by $G(x) = \int_0^{g(x)} g^{-1}(t) dt$, for every $x \in \mathbb{R}$.

Prove that G is differentiable on \mathbb{R} and G'(x) = xg'(x), for every $x \in \mathbb{R}$.

Hint. Use the fact that G(x) = F(g(x)), where $F(x) = \int_0^x g^{-1}(t) dt$.