Math 142B : Additional practice problems

1. True/False: Circle the correct answer. No justifications are needed in this exercise.
(1) If $f:[0,1] \rightarrow \mathbb{R}$ is integrable on $[0,1]$, then f is continuous on $[0,1]$. \mathbf{T} / \mathbf{F}
(2) Let $\left(f_{n}\right)$ be a sequence of integrable functions on $[0,1]$. Assume that $\lim _{n \rightarrow \infty} f_{n}(x)=0$, for every $x \in[0,1]$. Then $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}=0$.
\mathbf{T} / \mathbf{F}
(3) If f is a continuous function on \mathbb{R}, then there exists a function F which is differentiable on \mathbb{R} such that $f=F^{\prime}$.

T/F
2. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Let $P=\left\{a=t_{0}<t_{1}<\ldots<t_{n}=b\right\}$ be a partition of $[a, b]$. Give the definition of the upper Darboux sum $U(f, P)$ of f with respect to P. Give the defintion of a Riemann sum of f associated with P.
(b) State the Intermediate Value Theorem for Integrals.
(c) State what it means for a function $f:[a, b] \rightarrow \mathbb{R}$ to be piecewise continuous.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by $f(x)= \begin{cases}0, & \text { if } x \in[0,1] \text { is rational } \\ 2 x, & \text { if } x \in[0,1] \text { is irrational }\end{cases}$

Let $n \geq 1$ and consider the partition $P_{n}=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=1\right\}$, where $t_{k}=\frac{k}{n}$.
(a) Calculate $L\left(f, P_{n}\right)$.
(b) Calculate $U\left(f, P_{n}\right)$.
(c) Prove that f is not integrable on $[0,1]$.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be an increasing function.

Prove that $U(f, P)-L(f, P) \leq \operatorname{mesh}(P) \cdot[f(b)-f(a)]$, for every partition P of $[a, b]$.
5. Let f and g be continuous functions on $[0,1]$. Assume that $g(x)>0$, for every $x \in[0,1]$. Prove that there exists $x \in(0,1)$ such that $\frac{f(x)}{g(x)}=\frac{\int_{0}^{1} f}{\int_{0}^{1} g}$.
6. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $g(\mathbb{R})=\mathbb{R}$ and $g^{\prime}(x)>0$, for all $x \in \mathbb{R}$. Let $G: \mathbb{R} \rightarrow \mathbb{R}$ be given by $G(x)=\int_{0}^{g(x)} g^{-1}(t) \mathrm{d} t$, for every $x \in \mathbb{R}$.
Prove that G is differentiable on \mathbb{R} and $G^{\prime}(x)=x g^{\prime}(x)$, for every $x \in \mathbb{R}$.
Hint. Use the fact that $G(x)=F(g(x))$, where $F(x)=\int_{0}^{x} g^{-1}(t) \mathrm{d} t$.

