Math 142B : Practice Midterm 1

1. True/False: Circle the correct answer. No justifications are needed in this exercise.

(1) The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{3n}}{\sqrt{n}}$ is (-1,1). **T** / **F**

(2) Let (f_n) be a sequence of continuous functions on [0,1]. Assume that $f_n \to f$ uniformly on [0,1], for some function $f:[0,1] \to \mathbb{R}$. Then f is bounded on [0,1]. **T** / **F** (3) Let (f_n) be a sequence of continuous functions on [0,1]. Assume that $f_n \to f$ pointwise on [0,1], for some function $f:[0,1] \to \mathbb{R}$. Then f is continuous on [0,1]. **T** / **F** (4) Suppose that (a_k) is a sequence of real numbers such that the series $\sum_{k=0}^{\infty} 2^k a_k$ converges. Then the power series $\sum_{k=0}^{\infty} a_k x^k$ converges uniformly on [0,1]. **T** / **F**

(5) Let (a_k) be a sequence of real numbers such that the series $\sum_{k=1}^{\infty} a_{2k}$ and $\sum_{k=1}^{\infty} a_{2k-1}$ are

convergent. Then the power series $\sum_{k=1}^{\infty} a_k x^k$ converges uniformly on [-1, 1]. **T** / **F**

2. (a) State the formula for the radius of convergence of a power series $\sum_{n=0}^{\infty} a_n x^n$.

- For (b)-(c), consider functions $f_n: S \to \mathbb{R}$, for every $n \in \mathbb{N}$, and $f: S \to \mathbb{R}$.
- (b) State what it means for the sequence (f_n) to converge pointwise on S to f.
- (c) State what it means for the sequence (f_n) to converge uniformly on S to f.
- (c) State what it means for the sequence (f_n) to be uniformly Cauchy on S.

For (d)-(e), consider functions $g_k : S \to \mathbb{R}$, for every $k \in \mathbb{N}$. (d) State what it means for the series of functions $\sum_{k=1}^{\infty} g_k$ is actisfy the

(d) State what it means for the series of functions $\sum_{k=0}^{\infty} g_k$ to satisfy the Cauchy criterion uniformly on S.

(e) State the Weierstrass M-test for the series of functions $\sum_{k=0}^{\infty} g_k$ on the set S.

3. Let
$$f_n: (0,\infty) \to \mathbb{R}$$
 given by $f_n(x) = \frac{1}{nx+1}$ and $f: (0,\infty) \to \mathbb{R}$ given by $f(x) = 0$.

- (a) Prove that $f_n \to f$ pointwise on $(0, \infty)$.
- (b) Prove that $f_n \to f$ uniformly on (δ, ∞) , for every $\delta > 0$.
- (c) Prove that the sequence (f_n) does not converge uniformly to f on $(0, \infty)$.

4. (a) Let (f_n) be a sequence of functions on a set S, and suppose that $f_n \to f$ uniformly on S, for some bounded function $f: S \to \mathbb{R}$. Prove that $f_n^2 \to f^2$ uniformly on S.

(b) Prove that the series $\sum_{n=1}^{\infty} \frac{x^{n^2}}{2^n}$ has radius of convergence 1 and converges uniformly to continuous function on [-1, 1].

- 5. (a) Prove that the series $\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$ converges uniformly on [-M, M], for every M > 0.
- (b) Prove that the series $\sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$ does not converge uniformly on \mathbb{R} .

(c) Define
$$f : \mathbb{R} \to \mathbb{R}$$
 by letting $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{2^n n!}$

Prove that f is differentiable on \mathbb{R} and f'(x) = xf(x), for every $x \in \mathbb{R}$.