Math 142B : Practice Midterm 1

1. True/False: Circle the correct answer. No justifications are needed in this exercise.
(1) The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^{3 n}}{\sqrt{n}}$ is $(-1,1)$. $\quad \mathbf{T} / \mathbf{F}$
(2) Let $\left(f_{n}\right)$ be a sequence of continuous functions on $[0,1]$. Assume that $f_{n} \rightarrow f$ uniformly on $[0,1]$, for some function $f:[0,1] \rightarrow \mathbb{R}$. Then f is bounded on $[0,1]$.

T/F
(3) Let $\left(f_{n}\right)$ be a sequence of continuous functions on $[0,1]$. Assume that $f_{n} \rightarrow f$ pointwise on $[0,1]$, for some function $f:[0,1] \rightarrow \mathbb{R}$. Then f is continuous on $[0,1]$. \mathbf{T} / \mathbf{F}
(4) Suppose that $\left(a_{k}\right)$ is a sequence of real numbers such that the series $\sum_{k=0}^{\infty} 2^{k} a_{k}$ converges. Then the power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ converges uniformly on $[0,1]$.

T/F
(5) Let $\left(a_{k}\right)$ be a sequence of real numbers such that the series $\sum_{k=1}^{\infty} a_{2 k}$ and $\sum_{k=1}^{\infty} a_{2 k-1}$ are convergent. Then the power series $\sum_{k=1}^{\infty} a_{k} x^{k}$ converges uniformly on $[-1,1]$. $\quad \mathbf{T} / \mathbf{F}$
2. (a) State the formula for the radius of convergence of a power series $\sum_{n=0}^{\infty} a_{n} x^{n}$.

For (b)-(c), consider functions $f_{n}: S \rightarrow \mathbb{R}$, for every $n \in \mathbb{N}$, and $f: S \rightarrow \mathbb{R}$.
(b) State what it means for the sequence $\left(f_{n}\right)$ to converge pointwise on S to f.
(c) State what it means for the sequence $\left(f_{n}\right)$ to converge uniformly on S to f.
(c) State what it means for the sequence $\left(f_{n}\right)$ to be uniformly Cauchy on S.

For (d)-(e), consider functions $g_{k}: S \rightarrow \mathbb{R}$, for every $k \in \mathbb{N}$.
(d) State what it means for the series of functions $\sum_{k=0}^{\infty} g_{k}$ to satisfy the Cauchy criterion uniformly on S.
(e) State the Weierstrass M-test for the series of functions $\sum_{k=0}^{\infty} g_{k}$ on the set S.
3. Let $f_{n}:(0, \infty) \rightarrow \mathbb{R}$ given by $f_{n}(x)=\frac{1}{n x+1}$ and $f:(0, \infty) \rightarrow \mathbb{R}$ given by $f(x)=0$.
(a) Prove that $f_{n} \rightarrow f$ pointwise on $(0, \infty)$.
(b) Prove that $f_{n} \rightarrow f$ uniformly on (δ, ∞), for every $\delta>0$.
(c) Prove that the sequence $\left(f_{n}\right)$ does not converge uniformly to f on $(0, \infty)$.
4. (a) Let $\left(f_{n}\right)$ be a sequence of functions on a set S, and suppose that $f_{n} \rightarrow f$ uniformly on S, for some bounded function $f: S \rightarrow \mathbb{R}$. Prove that $f_{n}^{2} \rightarrow f^{2}$ uniformly on S.
(b) Prove that the series $\sum_{n=1}^{\infty} \frac{x^{n^{2}}}{2^{n}}$ has radius of convergence 1 and converges uniformly to continuous function on $[-1,1]$.
5. (a) Prove that the series $\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}$ converges uniformly on $[-M, M]$, for every $M>0$.
(b) Prove that the series $\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}$ does not converge uniformly on \mathbb{R}.
(c) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by letting $f(x)=\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}$.

Prove that f is differentiable on \mathbb{R} and $f^{\prime}(x)=x f(x)$, for every $x \in \mathbb{R}$.

