Math 142B : Practice Midterm 2

1. True/False: Circle the correct answer. No justifications are needed in this exercise.
(1) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at 0 , then $\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(0)}{|x|}=0$. $\quad \mathbf{T} / \mathbf{F}$
(2) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which is differentiable on \mathbb{R} and satisfies $f^{\prime}(x) \geq 0$, for every $x \in \mathbb{R}$. Then f is strictly increasing on \mathbb{R}.
\mathbf{T} / \mathbf{F}
(3) Let $f:(0,2) \cup(3,5) \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)=0$, for every $x \in(0,2) \cup(3,5)$, and $f(1)=f(4)$. Then f is a constant function on $(0,2) \cup(3,5)$. \mathbf{T} / \mathbf{F}
(4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which has derivatives of all orders at every $x \in \mathbb{R}$. Assume that the Taylor series for f about 0 is identically zero. Then f is identically zero. \mathbf{T} / \mathbf{F}
(5) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on \mathbb{R}, then f^{\prime} is continuous on \mathbb{R}. \mathbf{T} / \mathbf{F}
2. (a) Let f be a real-valued function defined on an open interval containing a point a. Define what it means for f to be differentiable at a.
(b) State the chain rule theorem.
(c) State Rolle's theorem.
(d) State the mean value theorem.
(e) State the intermediate value theorem for derivatives.
(f) Let f be a real-valued function defined on an interval I. Define what it means for f to be strictly decreasing on I.
(g) Let f be a real-valued function defined on an open interval containing a point c. Assume that f has derivatives of all orders at c. Define the Taylor series for f about c.
3. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{l}x^{2}, \text { if } x \text { is rational } \\ x^{3}, \text { if } x \text { is irrational }\end{array}\right.$

Prove that f is differentiable at 0 and $f^{\prime}(0)=0$.
(b) Show that $\lim _{x \rightarrow \infty} \sqrt{x} \sin \left(\frac{1}{x}\right)=0$.
4. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions.
(a) Assume that $f^{\prime}(x)<1$, for every $x \in \mathbb{R}$. Prove that the equation $f(x)=x$ has at most one solution $x \in \mathbb{R}$.
(b) Assume that $|g(x)-g(y)| \geq|x-y|$, for every $x, y \in \mathbb{R}$. Prove that $\left|g^{\prime}(x)\right| \geq 1$, for every $x \in \mathbb{R}$. Deduce that either $g^{\prime}(x) \geq 1$, for every $x \in \mathbb{R}$, or $g^{\prime}(x) \leq-1$, for every $x \in \mathbb{R}$.
5. (a) Use Taylor's theorem to prove that $1+\frac{3}{2} x<(1+x)^{\frac{3}{2}}<1+\frac{3}{2} x+\frac{3}{8} x^{2}$, for all $x>0$. (b) Find the Taylor series for the function $f(x)=e^{x}-e^{-x}-2 \sin x$ about 0 and show that it converges to $f(x)$, for every $x \in \mathbb{R}$.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which has derivatives of all orders such that $\left|f^{(n)}(x)\right| \leq n$!, for any $x \in(-1,1)$ and $n \in \mathbb{N}$. Prove that $f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}$, for every $x \in(-1,1)$.

