HW1

Q5 on p. 130
$g(z)$ has all removable singularity at $z_{1}, \ldots, z_{k} \in B\left(0, \frac{1}{3} R\right)$. Moreover, by maximum modulus theorem, it follows that

$$
\begin{aligned}
\max _{|z| \leq R} g(z) & \leq \max _{|z|=R} g(z)=\max _{|z|=R}\left|\frac{f(z)}{\prod_{k=1}^{n}\left(1-\frac{z}{z_{k}}\right)}\right| \\
& \leq \frac{M}{\prod_{k=1}^{n} \min _{|z|=R}\left|1-\frac{z}{z_{k}}\right|} \\
& \leq \frac{M}{\prod_{k=1}^{n} \min _{|z|=R}\left|\frac{z}{z_{k}}\right|-1} \\
& \leq \frac{M}{\prod_{k=1}^{n} \frac{R}{\frac{1}{3} R}-1}=M 2^{-n}
\end{aligned}
$$

Therefore, we have $a=f(0)=g(0) \leq M 2^{-n}$. Taking log on both sides, we obtain

$$
n \leq \frac{1}{\log 2} \log \left(\frac{M}{a}\right)
$$

Q3 on p. 133
(a) Suppose there exist $z_{0} \in D$ such that $\mathrm{f}(z)=0$, then by using a minmium modulus theorem on the function e^{f} and the fact that $\operatorname{Re}(f) \geq 0$ on D it follows that

$$
\left|e^{f\left(z_{0}\right)}\right| \leq\left|e^{f(z)}\right|=e^{\operatorname{Re} f(z)} \text { for } z \in B_{r}\left(z_{0}\right)
$$

where $B_{r}\left(z_{0}\right)$ is an open ball with center z_{0} and radius r such that $B_{r}\left(z_{0}\right) \subseteq D$. Since e^{f} attains a minimum on D, e^{f} is a constnat on D which in turn f is a constant on D. It has a contradiction. Hence, $\operatorname{Re}(f)>0$ on D.
(b) Let $F(w)=\frac{w-1}{w+1}$ maps right plane on \mathbb{C} to D. Then, we have $F \circ f$ maps D to itself with $F \circ f(0)=0$. By using the Schwartz Lemma, we have

$$
\begin{equation*}
\left|\frac{f-1}{f+1}\right| \leq|z| \tag{0.1}
\end{equation*}
$$

equ.1.1
Therefore, it implies

$$
\frac{|f|-1}{|f|+1} \leq|z|
$$

and $|f(z)| \leq \frac{1+|z|}{1-|z|}$ follows.
(c) Using Eq. $0.1 \mid$ and the triangle inequality that $1-|f| \leq|f-1|$, the result follows.

Q6 on p. 133
Suppose f never vanish in D, f is analytic on D, f is continuous on \bar{D} and f maps ∂D to itself, by using maximum and minimum modulus principle, we can
conclude that for $z \in D$, we have

$$
1=\min _{w \in \partial D}|f(w)| \leq|f(z)| \leq \max _{w \in \partial D}|f(w)|=1
$$

Hence, $f(z)$ is constantly equal to $f(0)$ for $z \in D$.
In general, suppose f vanishes at $z_{1}, \ldots, z_{k} \in D$ with multiplicity n_{1}, \ldots, n_{k}. We let

$$
F(z)=f(z) / \prod_{j=1}^{k}\left(\frac{z-z_{j}}{1-\overline{z_{j}} z}\right)^{n_{j}}
$$

We can check that $F(z)$ maps ∂D to ∂D and $F(z)$ never vanishes. Therefore, we have

$$
F(z)=F(0)=\frac{f(0)}{(-1)^{n_{1}+\cdots+n_{k}} \prod_{j=1}^{k} z_{j}^{n_{j}}}
$$

and hence,

$$
f(z)=F(0) \prod_{j=1}^{k}\left(\frac{z-z_{k}}{1-\overline{z_{k}} z}\right)
$$

Q4 on p .138
Let $g(z)=e^{z}$. Then $g:\left\{z \in \mathbb{C}: \log R_{1}<\operatorname{Re}(z)<\log R_{2}\right\} \rightarrow \operatorname{ann}\left(0 ; R_{1}, R_{2}\right)$ is a bijective analytic map. Then, we can apply Theorem 3.7 (see the textbook p.135) on $f \circ g$. We have $f \circ g$ to be a log-convex. In other words, for any $\log R_{1}<$ $w_{1}<w<w_{2} \leq \log R_{2}$ we have

$$
\log \hat{M}(w) \leq \frac{w_{2}-w}{w_{2}-w_{1}} \log \hat{M}\left(w_{1}\right)+\frac{w-w_{1}}{w_{2}-w_{1}} \log \hat{M}\left(w_{2}\right)
$$

where $\hat{M}(w):=\max \{|f \circ g(z)| \mathrm{z}=w\}$. If we define $M(r):=\max \{|f(z)| \mathrm{z}=r\}$, then Hadamard's Three Circles Theorem is followed by observing $\hat{M}(\log r)=$ $M(r), w_{2}=\log r_{2}, w_{1}=\log r_{1}$ and $w=\log r$.

Q6 on p. 138
We fixed $r<R$. It is checked that $F_{r}(z)=\frac{1}{2 \pi} \int f\left(z e^{i \theta}\right) \varphi_{r}(\theta) d \theta$ is analytic on $B(0, R)$ where $\varphi_{r}(\theta)=e^{-\operatorname{iarg}\left(f\left(r e^{i \theta}\right)\right)}$ is a continous function. Hence,

$$
\max _{z \in \partial B(0, r)}\left|F_{r}(z)\right| \leq \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta=F_{r}(r) \leq \max _{z \in \partial B(0, r)}\left|F_{r}(z)\right|
$$

and

$$
F_{r}(r)=I(r)
$$

Therefore, we have

$$
\max _{z \in \partial B(0, r)}\left|F_{r}(z)\right|=I(r)
$$

Also, supose $\hat{r} \neq r$, then $\max _{z \in \partial B(0, \hat{r})}\left|F_{r}(z)\right| \leq \iint_{0}^{2 \pi}\left|f\left(\hat{r} e^{i \theta}\right)\right| d \theta \leq I(\hat{r})$. Suppose $r_{1}<r<r_{2}$. By using Hadamard's three circle theorem it follows

$$
\begin{aligned}
\log I(r) & \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log \max _{z \in \partial B\left(0, r_{1}\right)}\left|F_{r}(z)\right|+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log \max _{z \in \partial B\left(0, r_{2}\right)}\left|F_{r}(z)\right| \\
& \leq \frac{\log r_{2}-\log r}{\log r_{2}-\log r_{1}} \log I\left(r_{1}\right)+\frac{\log r-\log r_{1}}{\log r_{2}-\log r_{1}} \log I\left(r_{2}\right)
\end{aligned}
$$

Moreover, by using a maximum modulus principle, it it clear that

$$
I\left(r_{1}\right)=\max _{z \in B\left(0, r_{1}\right)}\left|F_{r_{1}}(z)\right| \leq \max _{z \in \partial B\left(0, r_{2}\right)}\left|F_{r_{1}}(z)\right| \leq I\left(r_{2}\right)
$$

whenever $r_{2} \geq r_{1}$. Furthermore, suppose $I\left(r_{2}\right)=I\left(r_{1}\right)$ for $r_{1}<r_{2}$. Then $F_{r_{2}}(z)$ is deduced to be constant on $B(0, R)$ by using maximum modulus principle. In particularly, we have for $r_{1}<r<r_{2}$,

$$
\begin{aligned}
I(r) & =F_{r}(0) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(0)| d \theta \\
& \leq|f(0)|=\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta\right| \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta=I(r)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta \tag{0.2}
\end{equation*}
$$

equ.1.2
Let $e^{i \phi}$ be the unit norm complex number such that

$$
\frac{1}{2 \pi}\left|\int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta\right|=e^{i \phi} \frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}\right) d \theta
$$

Therefore, using Eq. ($\frac{0.012] \text {, we } 1.2}{}$ have

$$
\int_{0}^{2 \pi} \operatorname{Re}\left(f\left(r e^{i \theta}\right) e^{i \phi}\right)-\left|f\left(r e^{i \theta}\right)\right| d \theta=0
$$

and it implies $f\left(r e^{i \theta}\right) e^{i \phi}=\left|f\left(r e^{i \theta}\right)\right|$ because $\operatorname{Re}\left(f\left(r e^{i \theta}\right) e^{i \phi}\right) \leq\left|f\left(r e^{i \theta}\right)\right|$. Therefore, $\operatorname{Im}\left(f(z) e^{i \phi}\right)=0$ for $r_{1}<|z|=r<r_{2}$ and it contradicts with open mapping theorem as $\left\{f(z) e^{i \phi}: r_{1}<|z|=r<r_{2}\right\}$ is an open set.

Remark 0.1. More elementary method is to use Cauchy-Riemann Equation instead of open mapping theorem to argue f is a constant in this case.

Q5 on p .141
[This is Professor Adrian Ioana's idea] First we let $g_{n}(z)=\left(z-z_{0}\right) f^{n}(z)$ for $n \in \mathbb{N}$. Then $g_{n}(z)$ is analytic on G. Let $C=\max _{z \in G}\left|z-z_{0}\right|<\infty$ as G is a bounded set. Then, we have

$$
\max _{\partial G}\left|g_{n}(z)\right|=\max _{\partial G}\left|z-z_{0}\right|\left|f^{n}(z)\right| \leq C M^{n}
$$

Therefore, by using a maximum modulus principle 1.2, we have

$$
|f(z)| \leq \frac{C^{\frac{1}{n}} M}{\left|z-z_{0}\right|^{\frac{1}{n}}}
$$

for $z \in G$. Taking $n \rightarrow \infty$, we have $|f(z)| \leq M$.

