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Q5 on p.130
g (z) has all removable singularity at zq,...,2x € B (O, %R) . Moreover, by max-
imum modulus theorem, it follows that
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Therefore, we have a = f (0) = g (0) < M2~". Taking log on both sides, we obtain
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Q3 on p.133

(a) Suppose there exist zp € D such that f(z) = 0, then by using a minmium
modulus theorem on the function ef and the fact that Re (f) > 0 on D it follows
that

‘ef(ZO) =R/ for 2 € B, (%)

< ‘ef(z)

where B, (29) is an open ball with center zy and radius r such that B, (z9) C D.
Since e/ attains a minimum on D, ef is a constnat on D which in turn f is a
constant on D. It has a contradiction. Hence, Re (f) > 0 on D.

(b) Let F (w) = ﬁ maps right plane on C to D. Then, we have F o f maps D
to itself with F' o f (0) = 0. By using the Schwartz Lemma, we have

f—1
< . 0.1
il < (0.1)
Therefore, it implies
—1
|f] <,
|fl+1
and |f (2)] < }i—l‘zl folliovgs.
(c) Using Eq. j and the triangle inequality that 1 —|f| < |f — 1|, the result
follows.
Q6 on p.133

Suppose f never vanish in D, f is analytic on D, f is continuous on D and f
maps 0D to itself, by using maximum and minimum modulus principle, we can
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conclude that for z € D, we have
1= mi < <n =1.
Jnin |f (w)] < |f (2)] < max | (w)]

Hence, f (z) is constantly equal to f (0) for z € D.
In general, suppose f vanishes at z1, ...,z € D with multiplicity ny,...,ng. We

let
k z—z; \"
Z
2/ H <1 — ij)
Jj=1
We can check that F'(z) maps 0D to 0D and F (z)never vanishes. Therefore, we
have

_ _ f(0)
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and hence,
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Q4 on p.138

Let g(z) = €*. Then g: {z € C : logR; < Re(z) <log Ry} — ann (0; Ry, R2)
is a bijective analytic map. Then, we can apply Theorem 3.7 (see the textbook
p-135) on fog. We have f og to be a log-convex. In other words, for any log R <
wy < w < wy < log Ry we have

log M (w) < 270 g N1 (w1) + L jog (w2)
W2 — Wy W2 — Wy
where M (w) := max {|f o g (2)|z = w}. If we define M (r) := max {|f (z)|z = r},
then Hadamard’s Three Circles Theorem is followed by observing M (logr) =
M (r), we =logry, w1 = logr; and w = logr.
Q6 on p.138
We fixed r < R. It is checked that F. (z) = 5= [ f (2¢") ¢, (0) df is analytic on

B (0, R) where ¢, (0) = e~ iar9(7(r¢"")) is a continous function. Hence,
2m
F.(z)| < #)do = F, (r) < F,
xR [ ()] ()< _max [P ()

and

Therefore, we have

F, =1 .
max|F (2] =1 (1)

Also, supose 7 # 7, then max.cop(o,7) |Fr (2)| < ffo% |f (7e®)| d6 < I(7). Sup-
pose 11 < 1 < ro. By using Hadamard’s three circle theorem it follows
logre — logr

log I < =22 " ° F, — =2 ] F.
08 () < o TTogrs %8 a1 N g Thog ey 198 B, 1 ()

log I (r2)

logr — logry

logre — logr logr — logry

logI (r1) +
Moreover, by using a maximum modulus principle, it it clear that
I(r1)= max |F, (2)|< max |F, (2)] <1(re)
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whenever ro > ry. Furthermore, suppose I (ro) = I (r1) for r1 < ro. Then F,., (2)
is deduced to be constant on B (0, R) by using maximum modulus principle. In

particularly, we have for r; < r < rg,

10 =F 0 <5 [l o) as
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Therefore, we have
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Let €'® be the unit norm complex number such that
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Therefore, using Eq. . we have

/QW Re (f (Tew) ew) — ’f (rew)‘ df = 0.
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1.2

(0.2)

and it implies f (re’) e'® = | f (re’?)| because Re (f (re'?) ¢'®) < |f (re')|. There-
fore, Im (f (2) ew) =0 for ry < |z] =7 < ry and it contradicts with open mapping

theorem as {f (2)e'® : ry <|z| =7 <72} is an open set.

Remark 0.1. More elementary method is to use Cauchy-Riemann Equation instead

of open mapping theorem to argue f is a constant in this case.

Q5 on p.141

[This is Professor Adrian Ioana’s idea] First we let g, (2) = (z — 20) f™ (2) for
n € N. Then g, (%) is analytic on G. Let C = max,cq |z — 20| < o0 as G is a

bounded set. Then, we have
n = — " <CM™.
max |gn (2)| = max |2 — zof [f* (2)] <
Therefore, by using a maximum modulus principle 1.2, we have
CnM
f () < ———
|z — zo|™
for z € G. Taking n — oo, we have |f (2)] < M.



