
HW1

Q5 on p.130
g (z) has all removable singularity at z1, . . . , zk ∈ B

(
0, 13R

)
. Moreover, by max-

imum modulus theorem, it follows that

max
|z|≤R

g (z) ≤ max
|z|=R

g (z) = max
|z|=R

∣∣∣∣∣∣ f (z)∏n
k=1

(
1− z

zk

)
∣∣∣∣∣∣

≤ M∏n
k=1 min|z|=R

∣∣∣1− z
zk

∣∣∣
≤ M∏n

k=1 min|z|=R

∣∣∣ zzk ∣∣∣− 1

≤ M∏n
k=1

R
1
3R
− 1

=M2−n.

Therefore, we have a = f (0) = g (0) ≤M2−n. Taking log on both sides, we obtain

n ≤ 1

log 2
log

(
M

a

)
.

Q3 on p.133
(a) Suppose there exist z0 ∈ D such that f (z) = 0, then by using a minmium

modulus theorem on the function ef and the fact that Re (f) ≥ 0 on D it follows
that ∣∣∣ef(z0)∣∣∣ ≤ ∣∣∣ef(z)∣∣∣ = eRe f(z) for z ∈ Br (z0)

where Br (z0) is an open ball with center z0 and radius r such that Br (z0) ⊆ D.
Since ef attains a minimum on D, ef is a constnat on D which in turn f is a
constant on D. It has a contradiction. Hence, Re (f) > 0 on D.

(b) Let F (w) = w−1
w+1 maps right plane on C to D. Then, we have F ◦ f maps D

to itself with F ◦ f (0) = 0. By using the Schwartz Lemma, we have∣∣∣∣f − 1

f + 1

∣∣∣∣ ≤ |z| . (0.1) equ.1.1

Therefore, it implies
|f | − 1

|f |+ 1
≤ |z| ,

and |f (z)| ≤ 1+|z|
1−|z| follows.

(c) Using Eq. (
equ.1.1equ.1.1
0.1) and the triangle inequality that 1− |f | ≤ |f − 1| , the result

follows.
Q6 on p.133
Suppose f never vanish in D, f is analytic on D, f is continuous on D and f

maps ∂D to itself, by using maximum and minimum modulus principle, we can
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conclude that for z ∈ D, we have
1 = min

w∈∂D
|f (w)| ≤ |f (z)| ≤ max

w∈∂D
|f (w)| = 1.

Hence, f (z) is constantly equal to f (0) for z ∈ D.
In general, suppose f vanishes at z1, . . . , zk ∈ D with multiplicity n1, . . . , nk.We

let

F (z) = f (z) /

k∏
j=1

(
z − zj
1− zjz

)nj
.

We can check that F (z) maps ∂D to ∂D and F (z)never vanishes. Therefore, we
have

F (z) = F (0) =
f (0)

(−1)n1+···+nk∏k
j=1 z

nj
j

and hence,

f (z) = F (0)

k∏
j=1

(
z − zk
1− zkz

)
.

Q4 on p.138
Let g (z) = ez. Then g : {z ∈ C : logR1 < Re (z) < logR2} → ann (0;R1, R2)

is a bijective analytic map. Then, we can apply Theorem 3.7 (see the textbook
p.135) on f ◦ g. We have f ◦ g to be a log-convex. In other words, for any logR1 <
w1 < w < w2 ≤ logR2 we have

log M̂ (w) ≤ w2 − w
w2 − w1

log M̂ (w1) +
w − w1

w2 − w1
log M̂ (w2)

where M̂ (w) := max {|f ◦ g (z)| z = w} . If we de�ne M (r) := max {|f (z)| z = r} ,
then Hadamard's Three Circles Theorem is followed by observing M̂ (log r) =
M (r) , w2 = log r2, w1 = log r1 and w = log r.

Q6 on p.138
We �xed r < R. It is checked that Fr (z) =

1
2π

´
f
(
zeiθ

)
ϕr (θ) dθ is analytic on

B (0, R) where ϕr (θ) = e−iarg(f(re
iθ)) is a continous function. Hence,

max
z∈∂B(0,r)

|Fr (z)| ≤
ˆ 2π

0

∣∣f (reiθ)∣∣ dθ = Fr (r) ≤ max
z∈∂B(0,r)

|Fr (z)|

and
Fr (r) = I (r) .

Therefore, we have
max

z∈∂B(0,r)
|Fr (z)| = I (r) .

Also, supose r̂ 6= r, then maxz∈∂B(0,r̂) |Fr (z)| ≤
´ ´ 2π

0

∣∣f (r̂eiθ)∣∣ dθ ≤ I (r̂) . Sup-
pose r1 < r < r2. By using Hadamard's three circle theorem it follows

log I (r) ≤ log r2 − log r

log r2 − log r1
log max

z∈∂B(0,r1)
|Fr (z)|+

log r − log r1
log r2 − log r1

log max
z∈∂B(0,r2)

|Fr (z)|

≤ log r2 − log r

log r2 − log r1
log I (r1) +

log r − log r1
log r2 − log r1

log I (r2)

Moreover, by using a maximum modulus principle, it it clear that

I (r1) = max
z∈B(0,r1)

|Fr1 (z)| ≤ max
z∈∂B(0,r2)

|Fr1 (z)| ≤ I (r2)
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whenever r2 ≥ r1. Furthermore, suppose I (r2) = I (r1) for r1 < r2. Then Fr2 (z)
is deduced to be constant on B (0, R) by using maximum modulus principle. In
particularly, we have for r1 < r < r2,

I (r) = Fr (0) ≤
1

2π

ˆ 2π

0

|f (0)| dθ

≤ |f (0)| = 1

2π

∣∣∣∣ˆ 2π

0

f
(
reiθ

)
dθ

∣∣∣∣
≤ 1

2π

ˆ 2π

0

∣∣f (reiθ)∣∣ dθ = I (r) .

Therefore, we have

1

2π

∣∣∣∣ˆ 2π

0

f
(
reiθ

)
dθ

∣∣∣∣ = 1

2π

ˆ 2π

0

∣∣f (reiθ)∣∣ dθ. (0.2) equ.1.2

Let eiφ be the unit norm complex number such that

1

2π

∣∣∣∣ˆ 2π

0

f
(
reiθ

)
dθ

∣∣∣∣ = eiφ
1

2π

ˆ 2π

0

f
(
reiθ

)
dθ.

Therefore, using Eq. (
equ.1.2equ.1.2
0.2), we haveˆ 2π

0

Re
(
f
(
reiθ

)
eiφ
)
−
∣∣f (reiθ)∣∣ dθ = 0.

and it implies f
(
reiθ

)
eiφ =

∣∣f (reiθ)∣∣ because Re (f (reiθ) eiφ) ≤ ∣∣f (reiθ)∣∣ . There-
fore, Im

(
f (z) eiφ

)
= 0 for r1 < |z| = r < r2 and it contradicts with open mapping

theorem as
{
f (z) eiφ : r1 < |z| = r < r2

}
is an open set.

Remark 0.1. More elementary method is to use Cauchy-Riemann Equation instead
of open mapping theorem to argue f is a constant in this case.

Q5 on p.141
[This is Professor Adrian Ioana's idea] First we let gn (z) = (z − z0) fn (z) for

n ∈ N. Then gn (z) is analytic on G. Let C = maxz∈G |z − z0| < ∞ as G is a
bounded set. Then, we have

max
∂G
|gn (z)| = max

∂G
|z − z0| |fn (z)| ≤ CMn.

Therefore, by using a maximum modulus principle 1.2, we have

|f (z)| ≤ C
1
nM

|z − z0|
1
n

for z ∈ G. Taking n→∞, we have |f (z)| ≤M.
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