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Exercise. Q6 on p.150

First, we claim that {f,} is normal. Since f (z) = lim f, (z) for z € G. It follows
that for each z € G, there exists M, such that sup,, |f» ()| < M.. Therefore, the
closure of {f, (z) : n €N} is compact in G. Then we need the following lemma
to show {f,} is equicontinuous on G.

Lemma 0.1. For any € > 0 and z € G, there exists n, > 0 and N, > 0 such that
|fn (w) — f(w)| < € forwe B,, (2) CG andn > N,.

Proof. There exists N = N, > 0 such that |f, (2) — f(2)] < e for n > N.
Since f and fy are continuous at z € G, there exists n = 7, > 0 such that
If (2) — f(w)| <eand |fn (2) — fn (w)| < e for w € B, (2) C G. It follows that for
n > N and w € B, (2) we have

|fn (w) = f ()| < |fn (w) = f (w)]
<|fv(w) = v G+ [f (W) = F )+ [fn (2) = £ (2)]

< 3e.

The first inequality is because of the monotonically increasing condition of {f,}.
The lemma follows.

" ) 1.2
For any e > 0 and z € G, let n, and N, be the same symbol in Lemma ﬁ_We

1.2
take a 7, > & > 0 such that |f (2) — f (w)| < € for |z — w| < §. Using Lemmaﬁf
it shows that for all n > N,

[fn (W) = fr (2)] < [fn (w) = [ ()| + | (w) = F(2)] + [fn (2) = ] (2)]

< 3e.

Hence, {f,} is equicontinuous on G. By Arzela-Ascoli Theorem, {f,} is normal,
i.e. fpn, converges to f locally uniformly.

Next, we claim f,, converge to f locally uniformly. For any ¢ > 0 and any
compact set S C G, there exists K > 0 such that

| fr, (W) — f(w)| < eforwe Sand k> K.
Since fn, (W) < fim (w) < f(w) for all m > ng, it follows that

|[fn (w) — f (w)] < eforw € S and m > ng.
We have f, converges to f locally uniformly.

Remark 0.2. Another method to show f, — f: Welet g, = f — f,. For any € > 0,
z € K which is compact in G. There exists N, such that |g,| < |gn.| = gn, < €.
We denote O, = {w € G : gn. < €} . It is clear that O, is non-empty open set and
K C U,erO,. Since K is compact, there is a finite cover O,,,...,0,, to cover K.
As aresult, take N = min{N,, ..., N, } and we have |f (2) — f, (2)| = gn (2) <€
for all z € K and n > N.
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Exercise. Q7 on p.150
We need one lemma before we do this question.

Lemma 0.3. Suppose {x,} is a sequence on a metric space (X,d). Then, x,, con-
verges to x if and only if every subsequence of x,, has a furhter convergent subse-
quence which converges to the same limit x.

Proof.

7 =7 direction is a straight forward argument. Thus, we just show the other
direction. Suppose the conclusion is false, i.e. x,, » z. Then there exist ¢y and z,,
such that d (x,, ,x) > € for all k € N. Therefore, no further convergent subsequence
of x,, can converge to x. Contradicts with the given condition.

|

Suppose f (z) = lim f,, (2) for z € G. Then, for each z € G, there exists M, such
that sup,, |f» (2)| < M,. Moreover, {f,} is equicontinuous on G. Then, by Arzela-
Ascoli Theorem, {f,} is normal in G. Then for any subsequence of {f,}, there is
a further convergent subsequence converging to f be ause {)f the assumption that
f(z) =lim f, (2) for z € G. Hence, by using Lemma%ﬂ?% f

Exercise. Q4 on p.154
{fn}nen is locally bounded which means {f,}, oy is normal in H (G). Then for
any subsequence of {f,}, the subsequence has a further convergent subsequence

denoted by{fz} C{fn}. Let fo — ¢. By the assumption that lim f,, (z) = f (2) for

z € A and A has a limit point. Therefore, A' = {z € G : f(2) = g (2)} has a limit
point which follows that g = f on G. Then by using Lemma 0.2} we have f, — f.

Exercise. Q8 on p.154

Suppose there is a sequence of M,, of positive constant such that |a,| < M, and
lim sup \Mn|1/" < 1. Then for any open ball with center 0 and radius e < 1, B, (0),
we have for all z € B, (0),

Ifn (2)] < Z lan| 2] < ZMHE" < 00.

1/n

The last strict inequality because of limsup |M,€"| < 1. It follows that F is

locally bounded and hence normal by Montel Theorem.
Suppose F is normal in H (D). By Montel’s Theorem and Lemma 2.8, for any
0 < e < 1, there exists C. > 0 such that

|f (2)] <C¢forall feFand ze€ 0B, (0)

where B, (0) be a ball with center 0 and radius e. Then, by using Cauchy’s formula,

we have

n! 2mi
where v is an anti-clockwisely oriented closed curve on 9B, (0) . Therefore, using
Eq. %ﬂﬁn\ is bounded by the following

|an|§%foralll>e>0.
61'7/
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Then we take M, := infgccc f—n And therefore, fixed 0 < ¢g < 1, it follows that

C. 1/n
lim sup | M, |"/™ < lim sup ( inf ||>

0<e<1 €

) C 1/n 1
< hmsup¢ < =
n €o €0

because |C|"/™ — 1 as n — oo. Therefore, limsup,, | M, |"/"

ately if we take g — 1.

Exercise. Q5 on p.163,

Let D be a unit disk with center zero. By Riemann Mapping Theorem, there
exists the unique biholomorphic map g from G to D such that g(a) = 0 and
g (a) > 0. Then we let F(z) = go fog '(z)is a map from D to D such that
F (0) = 0. By Schwarz’s Lemma on p.130, we can conclude that

1> ‘F (0)‘ = ’(go fog‘l)/ (2)
=|y @f @@ ] = | @]

The second equality is because f (a) = a.

< 1 follows immedi-




