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Exercise. Q6 on p.150
First, we claim that {fn} is normal. Since f (z) = lim fn (z) for z ∈ G. It follows

that for each z ∈ G, there exists Mz such that supn |fn (z)| < Mz. Therefore, the
closure of {fn (z) : n ∈ N} is compact in G. Then we need the following lemma
to show {fn} is equicontinuous on G.

lem.1.2 Lemma 0.1. For any ε > 0 and z ∈ G, there exists ηz > 0 and Nz > 0 such that

|fn (w)− f (w)| < ε for w ∈ Bηz (z) ⊆ G and n ≥ Nz.

Proof. There exists N = Nz > 0 such that |fn (z)− f (z)| < ε for n ≥ N.
Since f and fN are continuous at z ∈ G, there exists η = ηz > 0 such that
|f (z)− f (w)| < ε and |fN (z)− fN (w)| < ε for w ∈ Bη (z) ⊆ G. It follows that for
n ≥ N and w ∈ Bη (z) we have

|fn (w)− f (w)| ≤ |fN (w)− f (w)|
≤ |fN (w)− fN (z)|+ |f (w)− f (z)|+ |fN (z)− f (z)|
≤ 3ε.

The �rst inequality is because of the monotonically increasing condition of {fn} .
The lemma follows.

For any ε > 0 and z ∈ G, let ηz and Nz be the same symbol in Lemma
lem.1.2lem.1.2
0.1. We

take a ηz > δ > 0 such that |f (z)− f (w)| < ε for |z − w| < δ. Using Lemma
lem.1.2lem.1.2
0.1,

it shows that for all n ≥ Nz
|fn (w)− fn (z)| ≤ |fn (w)− f (w)|+ |f (w)− f (z)|+ |fn (z)− f (z)|

≤ 3ε.

Hence, {fn} is equicontinuous on G. By Arzela-Ascoli Theorem, {fn} is normal,
i.e. fnk converges to f locally uniformly.

Next, we claim fn converge to f locally uniformly. For any ε > 0 and any
compact set S ⊆ G, there exists K > 0 such that

|fnk (w)− f (w)| < ε for w ∈ S and k ≥ K.

Since fnK (w) ≤ fm (w) ≤ f (w) for all m ≥ nK , it follows that

|fm (w)− f (w)| < ε for w ∈ S and m ≥ nK .

We have fn converges to f locally uniformly.

Remark 0.2. Another method to show fn → f : We let gn = f − fn. For any ε > 0,
z ∈ K which is compact in G. There exists Nz such that |gn| ≤ |gNz | = gNZ < ε.
We denote Oz = {w ∈ G : gNz < ε} . It is clear that Oz is non-empty open set and
K ⊆ ∪z∈KOz. Since K is compact, there is a �nite cover Oz1 , . . . , Ozk to cover K.
As a result, take N = min {Nz1, . . . , Nzk} and we have |f (z)− fn (z)| = gn (z) < ε
for all z ∈ K and n ≥ N.
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Exercise. Q7 on p.150
We need one lemma before we do this question.

lem.1.1 Lemma 0.3. Suppose {xn} is a sequence on a metric space (X, d) . Then, xn con-

verges to x if and only if every subsequence of xn has a furhter convergent subse-

quence which converges to the same limit x.

Proof.

” ⇒ ” direction is a straight forward argument. Thus, we just show the other
direction. Suppose the conclusion is false, i.e. xn 9 x. Then there exist ε0 and xnk
such that d (xnk , x) ≥ ε0 for all k ∈ N. Therefore, no further convergent subsequence
of xnk can converge to x. Contradicts with the given condition.

Suppose f (z) = lim fn (z) for z ∈ G. Then, for each z ∈ G, there exists Mz such
that supn |fn (z)| < Mz. Moreover, {fn} is equicontinuous on G. Then, by Arzela-
Ascoli Theorem, {fn} is normal in G. Then for any subsequence of {fn} , there is
a further convergent subsequence converging to f because of the assumption that
f (z) = lim fn (z) for z ∈ G. Hence, by using Lemma

lem.1.1lem.1.1
0.2, fn → f.

Exercise. Q4 on p.154
{fn}n∈N is locally bounded which means {fn}n∈N is normal in H (G) . Then for

any subsequence of {fn} , the subsequence has a further convergent subsequence

denoted by
{
f̂`

}
⊆ {fn} . Let f̂` → g. By the assumption that lim fn (z) = f (z) for

z ∈ A and A has a limit point. Therefore, A
′
= {z ∈ G : f (z) = g (z)} has a limit

point which follows that g ≡ f on G. Then by using Lemma
lem.1.1lem.1.1
0.2, we have fn → f.

Exercise. Q8 on p.154
Suppose there is a sequence of Mn of positive constant such that |an| ≤Mn and

lim sup |Mn|1/n ≤ 1. Then for any open ball with center 0 and radius ε < 1, Bε (0) ,
we have for all z ∈ Bε (0) ,

|fn (z)| ≤
∑
|an| |z|n ≤

∑
Mnε

n <∞.

The last strict inequality because of lim sup |Mnε
n|1/n < 1. It follows that F is

locally bounded and hence normal by Montel Theorem.
Suppose F is normal in H (D) . By Montel's Theorem and Lemma 2.8, for any

0 < ε < 1, there exists Cε > 0 such that

|f (z)| ≤ Cε for all f ∈ F and z ∈ ∂Bε (0)

where Bε (0) be a ball with center 0 and radius ε. Then, by using Cauchy's formula,
we have

an =
f (n) (0)

n!
=

1

2πi

ˆ
γ

f (z)

zn+1
dz (0.1) equ.1.1

where γ is an anti-clockwisely oriented closed curve on ∂Bε (0) . Therefore, using
Eq. (

equ.1.1equ.1.1
0.1), |an| is bounded by the following

|an| ≤
Cε
εn

for all 1 > ε > 0.
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Then we take Mn := inf0<ε<1
Cε
εn . And therefore, �xed 0 < ε0 < 1, it follows that

lim sup
n
|Mn|1/n ≤ lim sup

n

(
inf

0<ε<1

|Cε|1/n

ε

)

≤ lim sup
n

|Cε0 |
1/n

εo
≤ 1

ε0

because |Cε|1/n → 1 as n → ∞. Therefore, lim supn |Mn|1/n ≤ 1 follows immedi-
ately if we take ε0 → 1−.

Exercise. Q5 on p.163,
Let D be a unit disk with center zero. By Riemann Mapping Theorem, there

exists the unique biholomorphic map g from G to D such that g (a) = 0 and

g
′
(a) > 0. Then we let F (z) = g ◦ f ◦ g−1 (z) is a map from D to D such that

F (0) = 0. By Schwarz's Lemma on p.130, we can conclude that

1 ≥
∣∣∣F ′

(0)
∣∣∣ = ∣∣∣(g ◦ f ◦ g−1)′ (z)∣∣∣

=
∣∣∣g′

(a) f
′
(a)
(
g−1

)′
(0)
∣∣∣ = ∣∣∣f ′

(a)
∣∣∣ .

The second equality is because f (a) = a.
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