HW3

Exercise. Q3. on p.201

Lemma 0.1. Suppose O is an open set in \mathbb{C}_{∞} and $Q \subseteq O$. Let D and D' be the connected components of O and Q respectively. If $D \cap D' \neq \emptyset$, then $D' \subseteq D$.

Proof. Suppose $D' \subsetneq D$. There exists $z \in D' \cap \partial D \subseteq Q \subseteq O$. As O is open, there exists $\epsilon > 0$ such that a connected open ball $B_{\epsilon}(z) \subseteq O$. It follows that $z \in D \cap B_{\epsilon}(z)$ and hence, $D \cup B_{\epsilon}(z)$ is connected in O. Since D is open which mean $z \notin D$. Therefore, $D \cup B_{\epsilon}(z) \supseteq D$. Contradiction.

Lemma 0.2. Let D be the connected component of $\mathbb{C}_{\infty} - K$. Then $\partial D \subseteq \partial K$.

Proof. Suppose $\partial D \notin \partial K$. Then there exists $z \in \partial D \cap K^c$. Moreover, there exists $\epsilon > 0$ such that $B_{\epsilon}(z) \subseteq K^c$ because K^c is open. Since $B_{\epsilon}(z) \cap D \neq \emptyset$ and D is a connected component in K^c . We have $B_{\epsilon} \subseteq D$ which mean $D \cap \partial D \neq \emptyset$. Contradiction as D is open (Note D is a connected component of a open set K^c .)

Proof. of Q3.

Let D be a connected component of $\mathbb{C}_{\infty} - K$.

Case 1. D is unbounded. Let D' be the unbounded component of $\mathbb{C}_{\infty} - G \subseteq \mathbb{C}_{\infty} - K$. It follows that $\infty \in D \cap D'$. Therefore, by using Lemma 0.1, we have $D' \subseteq D$.

Case 2. D is bounded. By the assumption that $\overline{D} \cap \partial G \neq \emptyset$, we let $z \in \overline{D} \cap \partial G$. If $z \in \partial D$, then by Lemma 0.2, we have $\partial K \cap \partial G \neq \emptyset$ which contradicts the fact that a compact $K \subseteq G$ where G is open. Therefore, $z \in D \cap \partial G$. Since D is an open connected component of K^c , there exists $\epsilon > 0$ such that $B_{\epsilon}(z) \subseteq D$ and hence $B_{\epsilon}(z) \subseteq D$. Using the fact that $B_{\epsilon}(z) \cap G \neq \emptyset$, we have $D \cap G \neq \emptyset$ and from Lemma 0.1, D contains a connected component of G.

Exercise. Q4. on p.201

From (b) to (a), by using Q3 on p.201, $\mathbb{C}_{\infty} - G$ meets every components of $\mathbb{C}_{\infty} - K$. For any f which is analytic on a neighborhood of K and $\epsilon > 0$, by Runge's Theorem, there exists rational function g(z) whose poles are in $\mathbb{C}_{\infty} - G$ such that

$$\sup_{x \in K} \left| f\left(z\right) - g\left(z\right) \right| < \epsilon.$$

Then (a) follows because $g \in H(G)$.

From (c) to (b), suppose b is false. There exists a connected component D of G such that $\overline{D} \cap \partial G = \emptyset$. Then $\partial D \subseteq \partial K$ and $\partial D \neq \emptyset$ [otherwise, D is both open and closed in \mathbb{C}]. For any $f \in H(G)$ and $z \in D$, we have

$$|f(z)| \le \sup_{w \in \overline{D}} |f(w)| = \sup_{w \in \partial D} |f(w)| \le \sup_{w \in \partial K} |f(w)| \le \sup_{w \in K} |f(w)|$$

where the equality is by maximum modulus principle [Thm 1.2]. Contradicting with the condition in c.

From (a) to (c), let $z_0 \in G - K$. Let $f(z) = \frac{1}{z-z_0}$. Then by using a, for any $n \in \mathbb{N}$, there exists $f_n \in H(G)$ such that $\sup_{z \in K} |f(z) - f_n(z)| \leq \frac{1}{n}$. Hence, for all $z \in K$, it follows

$$|1 - (z - z_0) f_n(z)| \le \frac{|z - z_0|}{n} \le \frac{d(z_0, \partial K)}{n}.$$

Take N large enough such that $\frac{d(z_0,\partial K)}{N} \leq \frac{1}{2}$. Let $g(z) = 1 - (z - z_0) f_N(z) \in H(G)$. Then, $|g(z_0)| = 1$ while $\sup_{z \in K} |g(z)| \leq \frac{1}{2}$.

Exercise. Q1 on p.213

(a) G is path connected. Indeed for any two points $w_1, w_2 \in G$, we have two straight lines path $[a, w_1]$ and $[a, w_2] \subseteq G$. Then, $[w_1, a] \cup [a, w_2]$ is a path connecting w_1 and w_2 lying in G. [It is Alice Chan's idea] To G be open, for any $w \in G$, let $\epsilon = d([a, w], \gamma)$. For any $\hat{w} \in B_{\epsilon/2}(w)$, for any $u \in [a, \hat{w}]$, it follows that

$$d(u, [a, w]) \le d(\hat{w}, w) \le \epsilon/2.$$

Therefore, $u \notin \gamma$ and $\hat{w} \in G$. G being open follows immediately.

It suffices to show that $\partial G = \gamma$ in the second part. It is clear that $\gamma \subseteq \partial G$ because for any $z \in \gamma$, then we can pick $\{z_n\} \subseteq [a, z]$ such that $z_n \to z$ and $z_n \in G$. For the other inclusion, for $r \in \partial G$, $[a, r] \cap \gamma \neq \emptyset$. Let $\ell : \mathbb{C} \to \mathbb{C}$ such that $\ell(z) = [a, z, \infty) \cap \gamma$ where $[a, z, \infty)$ is an unbounded line which passing from a through z. Hence, $\ell(r) \in [a, r]$. Suppose $\ell(r) \neq r$, i.e. $r \notin \gamma$. By the continuity of ℓ , there exists an open ball B_r of r such that $\ell(\hat{r}) \in [a, \hat{r}]$ and $\ell(\hat{r}) \neq \hat{r}$ for $\hat{r} \in B_r$. It follows that $r \notin \partial G$ because there does not exists $w_n \in G$ such that $w_n \to r$. Contradiction.

(b) W.L.O.G., we assume $\gamma: [0,1] \to \mathbb{C}$. For any $\epsilon > 0$, there exists $\epsilon > \delta > 0$ such that

$$|f(z) - f(w)| < \epsilon \text{ if } z, w \in G \text{ and } |z - w| \le \delta + a\delta.$$

We denote a simple closed rectifiable curve $\hat{\gamma}[0,1]$ lying in G as

$$\hat{\gamma}(t) = a + (1 - \delta) \left(\gamma(t) - a\right). \tag{0.1}$$

Then, $|f(\gamma(t) - \hat{\gamma}(t))| < \epsilon$ and $\int_{\hat{\gamma}} f = 0$. Let $0 < t_1 < \cdots < t_m < 1$ be a partition of [0, 1], $\gamma_t := \gamma(t)$ and $\hat{\gamma}_t := \hat{\gamma}(t)$ such that

$$I = \left| \int_{\gamma} f - \sum_{k=1}^{m} f(\gamma_k) \left[\gamma_k - \gamma_{k-1} \right] \right| < \epsilon$$

and

$$II = \left| \int_{\hat{\gamma}} f - \sum_{k=1}^{m} f(\hat{\gamma}_k) \left[\hat{\gamma}_k - \hat{\gamma}_{k-1} \right] \right| < \epsilon.$$

Then,

$$\begin{split} \int_{\gamma} f \bigg| &= \left| \int_{\gamma} f - \int_{\hat{\gamma}} f \right| \\ &\leq I + II + \left| \sum_{k=1}^{m} f\left(\gamma_{k}\right) \left[\gamma_{k} - \gamma_{k-1}\right] - f\left(\hat{\gamma}_{k}\right) \left[\hat{\gamma}_{k} - \hat{\gamma}_{k-1}\right] \right| \\ &\leq 2\epsilon + \sum_{k=1}^{m} \left| f\left(\gamma_{k}\right) - f\left(\hat{\gamma}_{k}\right) \right| \left|\gamma_{k} - \gamma_{k-1}\right| + \\ &\sum_{k=1}^{m} \left| f\left(\hat{\gamma}_{k}\right) \right| \left| \left(\gamma_{k} - \gamma_{k-1}\right) - \left(\hat{\gamma}_{k} - \hat{\gamma}_{k-1}\right) \right| . \end{split}$$

Let $V(\gamma)$ be the total variation of γ . Then, it can be seen that

$$\sum_{k=1}^{m} \left| f\left(\gamma_{k}\right) - f\left(\hat{\gamma}_{k}\right) \right| \left|\gamma_{k} - \gamma_{k-1}\right| \leq \epsilon V\left(\gamma\right).$$

Let $M = \max_{t \in [0,1]} |\gamma(t)|$. By using Eq. (0.1), it follows that

$$\sum_{k=1}^{m} |f\left(\hat{\gamma}_{k}\right)| \left| \left(\gamma_{k} - \gamma_{k-1}\right) - \left(\hat{\gamma}_{k} - \hat{\gamma}_{k-1}\right) \right| \leq M \sum_{k=1}^{m} \delta \left|\gamma_{k} - \gamma_{k-1}\right| \leq M \epsilon V\left(\gamma\right).$$

Therefore,

$$\left|\int_{\gamma}f\right|\leq2\epsilon+\epsilon V\left(\gamma\right)+M\epsilon V\left(\gamma\right)$$

and $\left|\int_{\gamma} f\right| = 0$ is followed.

(c) \overline{G} is bounded because for any $z, w \in \overline{G}$.

$$|z - w| < |z - a| + |w - a| < 2 \operatorname{dist}(a, \gamma) < \infty.$$

Therefore, if $z \notin \overline{G}$, then z lies in the unbounded component of $\mathbb{C} - \gamma$ and hence $n(\gamma, z) = 0$ by Theorem 4.4 on p.82. For $z \in G$ where G is a region and $a \in G$. it follows that $n(\gamma, z) = n(\gamma, a)$ by Theorem 4.4 on p.82. Let $\epsilon > 0$ such that $a + \epsilon e^{2\pi i t} \in G$ for $t \in [0, 1]$. Then, there exists a strictly monotone function $\sigma(t)$ from [0, 1] to [0, 1] such that $\gamma(t) = \ell \left(a + \epsilon e^{2\pi i \sigma(t)} \right)$ for $t \in [0, 1]$. Let

$$\hat{\gamma}\left(t\right) = a + \epsilon e^{2\pi i\sigma(t)}.$$

Let

$$F(t,\tau) = \tau \gamma(t) + (1-\tau) \hat{\gamma}(t) \,.$$

It can be verified that γ is homotopic to $\hat{\gamma}$. Hence $n(\gamma, a) = n(\hat{\gamma}, a) = \pm 1$.

Exercise. Q7. on p.217

First, we note that $0 \in T$ because $h(f_0(z)) = z$ for $z \in D_0$ by the assumption. Moreover, suppose $t \in T$, then there exists an open interval I (the toplogy is the induced topology in [0,1]) of t such that $\gamma(s) \in D_t$ for all $s \in I$. Hence, by the definition of analytic continuation along γ [Def 2.2 on p.214], it follows that $f_s(z) = f_t(z)$ for $z \in D_t \cap D_s$ and hence $h(f_s(z)) = h(f_t(z)) = z$. Since both hand f_s are analytic on the region D_s , it follows that

$$h\left(f_{s}\left(z\right)\right) = z \text{ for all } z \in D_{s}.$$

Hence, $I \subseteq T$. T is open. Moreover, for $t_n \in T$ such that $t_n \to t$. There exists N > 0 such that $\gamma(t_n) \in D_t$ for $n \ge N$. By the same idea of arguing T being open, it follows that $f_{t_N}(z) = f_t(z)$ for all $z \in D_{t_N} \cap D_t$, and hence $h(f_t(z)) = h(f_{t_N}(z)) = z$. By the fact that h ad f_t are analytic on D_t , we have

$$h(f_t(z)) = z$$
 for all $z \in D_t$.

Therefore $t \in T$ and T is closed. In conclusion, T = [0, 1] because T is non-empty open and closed subset in [0, 1].