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Exercise. Q3. on p.201

Lemma 0.1. Suppose O is an open set in Coo and Q C O. Let D and D be the
connected components of O and Q respectively. If DN D’ # 0, then D' CD.

Proof. Suppose D' C D. There exists z € D' NnoD C Q C 0. As O is open,
there exists € > 0 such that a connected open ball B.(z) C O. It follows that
z € DN Be(z) and hence, D U B (2) is connected in O. Since D is open which
mean z ¢ D. Therefore, D U B, (z) 2 D. Contradiction. m

Lemma 0.2. Let D be the connected component of Coo — K. Then 0D C 0K.

Proof. Suppose 9D ¢ OK. Then there exists z € D N K°. Moreover, there
exists € > 0 such that B, (z) C K¢ because K¢ is open. Since B, (z) N D # () and
D is a connected component in K¢. We have B, C D which mean D N dD # (.
Contradiction as D is open (Note D is a connected component of a open set K€.)
[

Proof. of Q3.

Let D be a connected component of C, — K.

Case 1. D is unbounded. Let D" be the unbounded component of Co, — G C
Coo — K. Tt follows that oo € D N D'. Therefore, by using Lemma we have
D CD.

Case 2. D is bounded. By the assumption that D N9G # (), we let z € DN OG.
If z € 0D, then by Lemma we have 0K N OG # () which contradicts the fact
that a compact K C G where G is open. Therefore, z € D N dG. Since D is an
open connected component of K€, there exists ¢ > 0 such that B () C D and
hence B (z) C D. Using the fact that B, (2) NG # 0, we have DN G # () and from
Lemma [0.1) D contains a connected component of G. m

Exercise. Q4. on p.201

From (b) to (a), by using Q3 on p.201, C,, — G meets every components of
Cw — K. For any f which is analytic on a neighborhood of K and ¢ > 0, by
Runge’s Theorem, there exists rational function g (z) whose poles are in Co, — G
such that

sup [f (2) —g(2)| <e
zeK

Then (a) follows because g € H(G) .

From (c) to (b), suppose b is false. There exists a connected component D of G
such that D NAG = (). Then 9D C OK and 9D # ([otherwise, D is both open and
closed in CJ. For any f € H (G) and z € D, we have

[f ()] < sup [f (w)] = sup |f(w)] < sup |f(w)] < sup [f(w)]
wED wedD weIK weK

where the equality is by maximum modulus principle [Thm 1.2]. Contradicting
with the condition in c.
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From (a) to (c), let zp € G — K. Let f(z) = —~— Then by using a, for any

zZ—20.
n € N, there exists f, € H (G) such that sup,¢ g |f (2) — fn (2)| < 1. Hence, for
all z € K, it follows

L= (2 — 20) fu ()] < 22 20] ¢ 4(20:OK)
n n

Take N large enough such that w <L Letg(z) =1-(2—2)fn(2) €

H (G). Then, |g(20)| = 1 while sup_cf |9 (2)| < 3.

Exercise. Q1 on p.213

(a) G is path connected. Indeed for any two points wy, we € G, we have two
straight lines path [a, w;] and [a, ws] C G. Then, (w1, a]U[a, ws] is a path connecting
wy and wy lying in G. [It is Alice Chan’s idea] To G be open, for any w € G, let
€ =d([a,w],7). For any w € B,/5 (w), for any u € [a, @], it follows that

d (u,[a,w]) < d(w,w) < €/2.

Therefore, u ¢ v and w € G. G being open follows immediately.

It suffices to show that 0G = « in the second part. It is clear that v C 0G
because for any z € ~, then we can pick {z,} C [a,z] such that z, — z and
zn € G. For the other inclusion, for r € dG, [a,r] N~y # 0. Let £ : C — C such
that ¢ (z) = [a, 2, 00) Ny where [a, 2z, 00) is an unbounded line which passing from a
through z. Hence, ¢ (r) € [a,r]. Suppose £ (r) # r, i.e. r ¢ . By the continuity of
£, there exists an open ball B, of r such that ¢ (7) € [a,7] and £ () # 7 for # € B,.
It follows that r ¢ OG because there does not exists w,, € G such that w, — r.
Contradiction.

(b) W.L.O.G., we assume + : [0,1] — C. For any € > 0, there exists € > § > 0
such that

If(z) — f(w)| <eif z,we Gand |z —w| <J§+ad.
We denote a simple closed rectifiable curve 4 [0, 1] lying in G as
() =a+(1-0)(y(t)—a). (0.1)

Then, |f (v (t) —4(t))| < € and f,yf =0.Let 0 <ty <+ <tpy <1 be a partition
of [0,1], v :=~ (¢) and 4 := 4(¢) such that

I= /f—Zf(Vk)m—%—l] <e
A
and
1= [ £= 37 6o ba = 3ual| < e

Y =1
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Then

9

%

[l

> F ) e = ve-1] = F Gi) [k — A1

k=1

<2+ Y |f () = f Gl b — e | +
k=1

<IT+11+

S AN = e-1) = G — Fr-1)] -

k=1
Let V (y) be the total variation of . Then, it can be seen that

NE

If (k) = F )l vk — a1 < €V (7).

B

=1
Let M = maxycjo,1) |7 (t)|. By using Eq. (0.1)), it follows that

S GR = 1) = G = e-)| MY 8 |y — 1] < MeV (7).
k=1 k=1

Therefore,

[yf‘ <2+ eV (v) + MeV (v)

and | [, f| = 0 is followed.
(c) G is bounded because for any z,w € G.
|z —w| < |z —a|] + |w—a] < 2dist (a,v) < o0.

Therefore, if z ¢ G, then z lies in the unbounded component of C — + and hence
n(7y,z) = 0 by Theorem 4.4 on p.82. For z € G where G is a region and a € G.
it follows that n (v, 2) = n(y,a) by Theorem 4.4 on p.82. Let ¢ > 0 such that
a+ee?™ € G fort € [0,1]. Then, there exists a strictly monotone function o (¢)from
[0,1] to [0,1] such that v (t) = £ (a + ee*™"®)) for ¢ € [0,1]. Let

A(t)=a+ ee?mio(®),
Let
Ft,r)=my )+ 1 —-7)5(t).
It can be verified that + is homotopic to 4. Hence n (v,a) = n(%,a) = £1.

Exercise. Q7. on p.217

First, we note that 0 € T because h (fy (2)) = z for z € Dy by the assumption.
Moreover, suppose ¢t € T, then there exists an open interval I (the toplogy is
the induced topology in [0,1]) of ¢ such that vy (s) € D, for all s € I. Hence, by
the definition of analytic continuation along ~ [Def 2.2 on p.214], it follows that
fs (2) = fi (z) for z € D; N Dy and hence h (fs(z)) = h(f: (z)) = z. Since both h
and fs are analytic on the region Dy, it follows that

h(fs(z)) =z for all z € D;.
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Hence, I C T. T is open. Moreover, for t,, € T such that t, — ¢. There exists N > 0
such that v(t,) € D; for n > N. By the same idea of arguing T being open, it follows
that fiy (2) = fi (2) for all z € D, N Dy, and hence h (f: (2)) = h(fiy (2)) = 2.
By the fact that h ad f; are analytic on D;, we have

h(fi(z)) =zforall z € D,.

Therefore t € T and T is closed. In conclusion, T' = [0, 1] because T is non-empty
open and closed subset in [0,1].



