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Exercise. Q3. on p.201

Lemma 0.1. Suppose O is an open set in C∞ and Q ⊆ O. Let D and D
′
be the

connected components of O and Q respectively. If D ∩D′ 6= ∅, then D
′ ⊆ D.

Proof. Suppose D
′ ( D. There exists z ∈ D′ ∩ ∂D ⊆ Q ⊆ O. As O is open,

there exists ε > 0 such that a connected open ball Bε (z) ⊆ O. It follows that
z ∈ D ∩ Bε (z) and hence, D ∪ Bε (z) is connected in O. Since D is open which
mean z /∈ D. Therefore, D ∪Bε (z) ⊇ D. Contradiction.

Lemma 0.2. Let D be the connected component of C∞ −K. Then ∂D ⊆ ∂K.

Proof. Suppose ∂D * ∂K. Then there exists z ∈ ∂D ∩ Kc. Moreover, there
exists ε > 0 such that Bε (z) ⊆ Kc because Kc is open. Since Bε (z) ∩D 6= ∅ and
D is a connected component in Kc. We have Bε ⊆ D which mean D ∩ ∂D 6= ∅.
Contradiction as D is open (Note D is a connected component of a open set Kc.)

Proof. of Q3.
Let D be a connected component of C∞ −K.
Case 1. D is unbounded. Let D

′
be the unbounded component of C∞ − G ⊆

C∞ − K. It follows that ∞ ∈ D ∩ D′
. Therefore, by using Lemma 0.1, we have

D
′ ⊆ D.
Case 2. D is bounded. By the assumption that D ∩ ∂G 6= ∅, we let z ∈ D ∩ ∂G.

If z ∈ ∂D, then by Lemma 0.2, we have ∂K ∩ ∂G 6= ∅ which contradicts the fact
that a compact K ⊆ G where G is open. Therefore, z ∈ D ∩ ∂G. Since D is an
open connected component of Kc, there exists ε > 0 such that Bε (z) ⊆ D and
hence Bε (z) ⊆ D. Using the fact that Bε (z)∩G 6= ∅, we have D∩G 6= ∅ and from
Lemma 0.1, D contains a connected component of G.

Exercise. Q4. on p.201
From (b) to (a), by using Q3 on p.201, C∞ − G meets every components of

C∞ − K. For any f which is analytic on a neighborhood of K and ε > 0, by
Runge’s Theorem, there exists rational function g (z) whose poles are in C∞ − G
such that

sup
z∈K
|f (z)− g (z)| < ε.

Then (a) follows because g ∈ H(G) .
From (c) to (b), suppose b is false. There exists a connected component D of G

such that D ∩ ∂G = ∅. Then ∂D ⊆ ∂K and ∂D 6= ∅[otherwise, D is both open and
closed in C]. For any f ∈ H (G) and z ∈ D, we have

|f (z)| ≤ sup
w∈D
|f (w)| = sup

w∈∂D
|f (w)| ≤ sup

w∈∂K
|f (w)| ≤ sup

w∈K
|f (w)|

where the equality is by maximum modulus principle [Thm 1.2]. Contradicting
with the condition in c.
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From (a) to (c), let z0 ∈ G − K. Let f (z) = 1
z−z0. Then by using a, for any

n ∈ N, there exists fn ∈ H (G) such that supz∈K |f (z)− fn (z)| ≤ 1
n . Hence, for

all z ∈ K, it follows

|1− (z − z0) fn (z)| ≤
|z − z0|
n

≤ d (z0, ∂K)

n
.

Take N large enough such that d(z0,∂K)
N ≤ 1

2 . Let g (z) = 1 − (z − z0) fN (z) ∈
H (G) . Then, |g (z0)| = 1 while supz∈K |g (z)| ≤ 1

2 .

Exercise. Q1 on p.213
(a) G is path connected. Indeed for any two points w1, w2 ∈ G, we have two

straight lines path [a,w1] and [a,w2] ⊆ G. Then, [w1, a]∪[a,w2] is a path connecting
w1 and w2 lying in G. [It is Alice Chan’s idea] To G be open, for any w ∈ G, let
ε = d ([a,w] , γ) . For any ŵ ∈ Bε/2 (w) , for any u ∈ [a, ŵ] , it follows that

d (u, [a,w]) ≤ d (ŵ, w) ≤ ε/2.

Therefore, u /∈ γ and ŵ ∈ G. G being open follows immediately.
It suffices to show that ∂G = γ in the second part. It is clear that γ ⊆ ∂G

because for any z ∈ γ, then we can pick {zn} ⊆ [a, z] such that zn → z and
zn ∈ G. For the other inclusion, for r ∈ ∂G, [a, r] ∩ γ 6= ∅. Let ` : C → C such
that ` (z) = [a, z,∞)∩γ where [a, z,∞) is an unbounded line which passing from a
through z. Hence, ` (r) ∈ [a, r] . Suppose ` (r) 6= r, i.e. r /∈ γ. By the continuity of
`, there exists an open ball Br of r such that ` (r̂) ∈ [a, r̂] and ` (r̂) 6= r̂ for r̂ ∈ Br.
It follows that r /∈ ∂G because there does not exists wn ∈ G such that wn → r.
Contradiction.

(b) W.L.O.G., we assume γ : [0, 1] → C. For any ε > 0, there exists ε > δ > 0
such that

|f (z)− f (w)| < ε if z, w ∈ G and |z − w| ≤ δ + aδ.

We denote a simple closed rectifiable curve γ̂ [0, 1] lying in G as

γ̂ (t) = a+ (1− δ) (γ (t)− a) . (0.1)

Then, |f (γ (t)− γ̂ (t))| < ε and
´
γ̂
f = 0. Let 0 < t1 < · · · < tm < 1 be a partition

of [0, 1] , γt := γ (t) and γ̂t := γ̂(t) such that

I =

∣∣∣∣∣
ˆ
γ

f −
m∑
k=1

f (γk) [γk − γk−1]

∣∣∣∣∣ < ε

and

II =

∣∣∣∣∣
ˆ
γ̂

f −
m∑
k=1

f (γ̂k) [γ̂k − γ̂k−1]

∣∣∣∣∣ < ε.
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Then, ∣∣∣∣ˆ
γ

f

∣∣∣∣ = ∣∣∣∣ˆ
γ

f −
ˆ
γ̂

f

∣∣∣∣
≤ I + II +

∣∣∣∣∣
m∑
k=1

f (γk) [γk − γk−1]− f (γ̂k) [γ̂k − γ̂k−1]

∣∣∣∣∣
≤ 2ε+

m∑
k=1

|f (γk)− f (γ̂k)| |γk − γk−1|+

m∑
k=1

|f (γ̂k)| |(γk − γk−1)− (γ̂k − γ̂k−1)| .

Let V (γ) be the total variation of γ. Then, it can be seen that
m∑
k=1

|f (γk)− f (γ̂k)| |γk − γk−1| ≤ εV (γ) .

Let M = maxt∈[0,1] |γ (t)| . By using Eq. (0.1), it follows that
m∑
k=1

|f (γ̂k)| |(γk − γk−1)− (γ̂k − γ̂k−1)| ≤M
m∑
k=1

δ |γk − γk−1| ≤MεV (γ) .

Therefore, ∣∣∣∣ˆ
γ

f

∣∣∣∣ ≤ 2ε+ εV (γ) +MεV (γ)

and
∣∣∣´γ f ∣∣∣ = 0 is followed.

(c) G is bounded because for any z, w ∈ G.

|z − w| < |z − a|+ |w − a| < 2 dist (a, γ) <∞.

Therefore, if z /∈ G, then z lies in the unbounded component of C − γ and hence
n (γ, z) = 0 by Theorem 4.4 on p.82. For z ∈ G where G is a region and a ∈ G.
it follows that n (γ, z) = n (γ, a) by Theorem 4.4 on p.82. Let ε > 0 such that
a+εe2πit ∈ G for t ∈ [0, 1] . Then, there exists a strictly monotone function σ (t)from
[0, 1] to [0, 1] such that γ (t) = `

(
a+ εe2πiσ(t)

)
for t ∈ [0, 1] . Let

γ̂ (t) = a+ εe2πiσ(t).

Let
F (t, τ) = τγ (t) + (1− τ) γ̂ (t) .

It can be verified that γ is homotopic to γ̂. Hence n (γ, a) = n (γ̂, a) = ±1.

Exercise. Q7. on p.217
First, we note that 0 ∈ T because h (f0 (z)) = z for z ∈ D0 by the assumption.

Moreover, suppose t ∈ T, then there exists an open interval I (the toplogy is
the induced topology in [0, 1]) of t such that γ (s) ∈ Dt for all s ∈ I. Hence, by
the definition of analytic continuation along γ [Def 2.2 on p.214], it follows that
fs (z) = ft (z) for z ∈ Dt ∩Ds and hence h (fs (z)) = h (ft (z)) = z. Since both h
and fs are analytic on the region Ds, it follows that

h (fs (z)) = z for all z ∈ Ds.
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Hence, I ⊆ T. T is open. Moreover, for tn ∈ T such that tn → t. There exists N > 0
such that γ(tn) ∈ Dt for n ≥ N. By the same idea of arguing T being open, it follows
that ftN (z) = ft (z) for all z ∈ DtN ∩ Dt, and hence h (ft (z)) = h (ftN (z)) = z.
By the fact that h ad ft are analytic on Dt, we have

h (ft (z)) = z for all z ∈ Dt..

Therefore t ∈ T and T is closed. In conclusion, T = [0, 1] because T is non-empty
open and closed subset in [0, 1] .
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