HW4

Exercise. Q2. on p. 221
(a) By Proposition 2.4 on p.215, it follows that $[g]_{\gamma(t)}=[f]_{\gamma(t)}$. Therefore, there exists an open set U of $\gamma(t)$ such that $g=f$ on U. Since f is analytic on $B(\gamma(t), R(t))$. By the unique analytic extension, we can also conclude that g is analytic on $B(\gamma(t), r(t))$. Hence, $R(t) \leq r(t)$. Similarly, we can also verified that $r(t) \leq R(t)$. Therefore, $R(t)=r(t)$.
(b) Since $\gamma(t)$ lies in $\mathbb{C}-\{x \in \mathbb{R}: x \leq 0\}$ on which the principal branch \log can be defined, let f_{t} be the principal branch \log and $D_{t}=D(\gamma(t), 1+a t)$ where $1+a t$ is a distance between $\gamma(t)$ and the origin). Then $\left(f_{t}, D_{t}\right)$ is an analytic continuation of $\left(f_{0}, D_{0}\right)$ along $\gamma(t)$ where $f_{0}=f$ and $D_{0}=B(1 ; 1)$. By part a, we have $R(t)=1+a t$.
(c) It can be verified that $f_{t}=\ln r+i \theta$ where $-\pi+2 \pi t<\theta<\pi+2 \pi t$ and $D_{t}=(\gamma(t), 1-a t)$, where $1-a t$ is a distance between $\gamma(t)$ and the origin, is an analytic continuation of $\left(f_{0}, D_{0}\right)$ along $\gamma(t)$. By part a, we have $R(t)=1-a t$.
(d) In part b, let $F(a)=\min \{R(t): t \in[0,1]\}=1$. Hence, $\lim _{a \rightarrow 0} F(a)=$ $\lim _{a \rightarrow \infty} F(a)=1$. In part c, let $F(a)=\min \{R(t): t \in[0,1]\}=1-a$. Hence, $\lim _{a \rightarrow 0} F(a)=1$ and $\lim _{a \rightarrow 1^{-}} F(a)=0$.

Exercise. Q1. on p. 233
Given $\left(z,[f]_{z}\right) \in \mathscr{S}(\mathbb{C})$, let $B(f(z), \epsilon)$ be an open ball of $f(z)$ with radius ϵ. It suffices to check that $F^{-1}(B(f(z), \epsilon))$ is open in $\mathscr{S}(\mathbb{C})$. For any $\left(a,[g]_{a}\right) \in$ $F^{-1}(B(f(z), \epsilon))$, it follows that $g(a) \in B(f(z), \epsilon)$ which means there exists $\epsilon_{a}>0$ such that

$$
|f(z)-g(a)|=\epsilon_{a}<\epsilon
$$

Since g is analytic locally at a, there exists $\delta>0$ such that $|g(a)-g(b)|<\epsilon-\epsilon_{a}$ if $|a-b|<\delta$. Then, for $b \in B(a, \delta)$, it follows that

$$
|f(z)-g(b)|=|f(z)-g(a)|+|g(a)-g(b)|<\epsilon .
$$

and hence, $\left(b,[g]_{b}\right) \in F^{-1}(B(f(z), \epsilon))$. Therefore, we can conclude that

$$
N(g, B(a, \delta)) \subseteq F^{-1}(B(f(z), \epsilon))
$$

and $F^{-1}(B(f(z), \epsilon))$ being open follows.
Exercise. Q2. on p. 233
We let $G_{1}=\mathbb{C}-\{z \in \mathbb{C}: \operatorname{Re}(z) \leq 0\}$ and F be a principal branch of logarithm on G_{1}. Then,

$$
F(z):=\log |z|+i \arg (z)
$$

where $-\pi<\arg (z)<\pi$. Then \mathscr{F} is a complete of analytic function where the function element is $\left(F, G_{1}\right)$.

Given $a \in D$, we first show $[f]_{a} \in \mathscr{F}$. Since f is a branch of the logarithm on D, there exists $\phi \in \mathbb{R}$ such that

$$
f(z):=\log |z|+i \arg (z)
$$

where $-\pi+\phi<\arg (z)<\pi+\phi$. Let $\varphi_{a}=\arg (a)$ where $-\pi+\phi<\arg (a)<\pi+\phi$. Then, let $b=|a| \in G_{1}$ and $\gamma(t)=|a| e^{2 \pi i t}$ where $t \in\left[0, \varphi_{a}\right]$ be a path from b to a. It can be verified that $[f]_{a}$ is the analytic continuation of $[f]_{b}$ along γ. Hence, $[f]_{a} \in \mathscr{F}$.

Then, we show $[f]_{a} \in \mathscr{F}$ implies $f: D \rightarrow \mathbb{C}$ is a branch of the logarithm. It suffices to check $\exp (f(z))=z$ for $z \in D$. By using the condition that $[f]_{a} \in \mathscr{F}$, there exists a path $\gamma(t)$ from $\gamma(0)=b \in G_{1}$ to $\gamma(1)=a \in D$ such that $[f]_{a}$ is an analytic continuation of $[F]_{b}$. It can be verified that $\exp (F(z))=z$ on G_{1}. Then, by using Q7 on p. 217 with $h(z)=\exp (z)$ and $G=\mathbb{C}$ in Q7, it follows that $\exp (f(z))=z$ on D.

