Strategies for Stable Merge Sorting

Authors: Sam Buss, Alexander Knop

Institute: U.C. San Diego
Sorting problem

It is impossible to sort with runtime less than $n \log n$.
Sorting problem

It is impossible to sort with runtime less than \(n \log n \). **Merge Sort** also known as "von Neumann sort" is one of the first sorting algorithms with \(O(n \log n) \) runtime.
Basic Von Neumann merge sort

- A "run" is an ascending sequence.
- Input consists of runs of size 1 (at leaves).
- Output: a single run containing all inputs (at the root).
- Formed by binary tree of merges combining runs.
- Runtime is $O(n \log n)$, where $n =$ input size.

Merge sort is readily made stable, by merging only adjacent runs.
Bottom up algorithm for Von Neumann Sort

```python
def von_neumann_sort(S, n):
    Q = [] # Stack of runs
    while S.empty?
        Q.push(Run.new(S.pop, 1)), l = Q.size
        while Q[l - 2].size < 2 * Q[l - 1].size do
            Q.merge(l - 2, l - 1)
        end
    end
    Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
    return Q[0]
end
```
It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.
Sorting problem

It is impossible to sort with runtime less than $n \log n$. **Merge Sort** also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

- If we know something about the elements of the list we can sort much faster e.g. if all the elements of the list are integers with c digits, then the running time of the Digit Sort is $O(n \log c)$.
Sorting problem

It is impossible to sort with runtime less than $n \log n$. Merge Sort also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

- If we know something about the elements of the list we can sort much faster e.g. if all the elements of the list are integers with c digits, then the running time of the Digit Sort is $O(n \log c)$.

- If the array is partially presorted we again can sort much faster e.g. if it is possible to split the list into m sorted subsequences (called "runs"), then the running time of the Natural Merge Sort (suggested by Knuth) is $O(n \log m)$.
Sorting problem

It is impossible to sort with runtime less than $n \log n$. **Merge Sort** also known as "von Neumann sort" is one of the first sorting algorithms with $O(n \log n)$ runtime.

- If we know something about the elements of the list we can sort much faster e.g. if all the elements of the list are integers with c digits, then the running time of the Digit Sort is $O(n \log c)$.

- If the array is partially presorted we again can sort much faster e.g. if it is possible to split the list into m sorted subsequences (called "runs"), then the running time of the **Natural Merge Sort** (suggested by Knuth) is $O(n \log m)$. Natural Merge Sort identify runs which are already represent in the input.
Unequal run sizes - left-to-right binary merging

- Merging follows same left-to-right binary tree pattern as before.
Unequal run sizes - left-to-right binary merging

- Merging follows same left-to-right binary tree pattern as before.
- Inefficiency: the two longer runs are merged too soon.
Unequal run sizes - left-to-right binary merging

- Merging follows same left-to-right binary tree pattern as before.
- Inefficiency: the two longer runs are merged too soon. More efficient to delay merging them...
Unequal run sizes - more efficient merging
Unequal run sizes - more efficient merging

- **Merge Cost:** To merge runs of size ℓ_1, ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$.
Unequal run sizes - more efficient merging

Merge Cost: To merge runs of size ℓ_1, ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$. We measure runtime by summing merge cost of all merges.
Unequal run sizes - more efficient merging

- **Merge Cost**: To merge runs of size ℓ_1, ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$. We measure runtime by summing merge cost of all merges.

- Merge cost upper bounds comparison cost, and essentially matches comparison cost in most implementations.
Unequal run sizes - more efficient merging

- **Merge Cost:** To merge runs of size ℓ_1, ℓ_2 takes time $\Theta(\ell_1 + \ell_2)$. We measure runtime by summing merge cost of all merges.
 - Merge cost upper bounds comparison cost, and essentially matches comparison cost in most implementations.

An **adaptive** merge sort chooses the order of merges to minimize the merge cost.
Basic framework for merge sorts: \((k_1, k_2)\)-aware

def generic_merge_sort(S, n):
 Q = []
 while Q.size > 1 or not S.empty?:
 l = Q.size
 if merge?(Q[l - k_1].size, Q[l - k_1 + 1].size, ...
 Q[l - 1].size, S.empty?)
 i = choose_runs(Q) # l - k_2 <= i < l - 1
 Q.merge(i, i + 1)
 else
 Q.push(S.pop_run())
 end
end
return Q[0]
TimSort

TimSort is a natural merge sort - defined on next slide.
TimSort is a natural merge sort - defined on next slide.

- TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
TimSort

TimSort is a natural merge sort - defined on next slide.

- TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- Due to Tim Peters [*Python-Dev* blog post, 2002].
TimSort is a natural merge sort - defined on next slide.

- TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- Due to Tim Peters [*Python-Dev* blog post, 2002].
- TimSort is 4-aware; indeed (4,3)-aware. Based on the top four runs' sizes, chooses whether to merge some pair of runs.
TimSort is a natural merge sort - defined on next slide.

- TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- Due to Tim Peters [Python-Dev blog post, 2002].
- TimSort is 4-aware; indeed (4,3)-aware. Based on the top four runs' sizes, chooses whether to merge some pair of runs.
- Designed to work well both with partially sorted data, and with $n \log n$ worst-case runtime.
TimSort is a natural merge sort - defined on next slide.

- TimSort is perhaps the most widely deployed sort ever, used in Python, Android, Java, and some browsers.
- Due to Tim Peters [*Python-Dev blog post, 2002*].
- TimSort is 4-aware; indeed (4,3)-aware. Based on the top four runs' sizes, chooses whether to merge some pair of runs.
- Designed to work well both with partially sorted data, and with $n \log n$ worst-case runtime.
- Has received little academic study until recently.
def tim_sort(S, n):
 Q = []
 while S.empty? do
 Q.push(S.pop_run()), l = Q.size
 while true do
 if Q[l - 3].size < Q[l - 1].size then
 Q.merge(l - 3, l - 2)
 elsif Q[l - 3].size <= Q[l - 2].size + Q[l - 1].size
 or Q[l - 4].size <= Q[l - 3].size + Q[l - 2].size
 or Q[l - 2].size <= Q[l - 1].size then
 Q.merge(l - 2, l - 1)
 else
 break
 end
 end
 end
 Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
 return Q[0]
end
Intuition for TimSort:

\[Q[i].size > Q[i + 1].size + Q[i + 2].size \]

is maintained.
TimSort

Intuition for TimSort:

\[Q[i].size > Q[i + 1].size + Q[i + 2].size \]

is maintained. Thus stack \(Q \) has logarithmic height; and runtime is \(O(n \log n) \).
Intuition for TimSort:

\[Q[i].size > Q[i + 1].size + Q[i + 2].size \]

is maintained. Thus stack \(Q \) has logarithmic height; and runtime is \(O(n \log n) \). This is true of the corrected version of [dGRBBH]; they corrected this while developing a formal proof of correctness.
Intuition for TimSort:

\[Q[i].size > Q[i + 1].size + Q[i + 2].size \]

is maintained. Thus stack \(Q \) has logarithmic height; and runtime is \(O(n \log n) \). This is true of the corrected version of [dGRBBH]; they corrected this while developing a formal proof of correctness.

THEOREM (AJNP'18)

TimSort has runtime \(O(n \log m) \). (Proving a conjecture of [Buss-K.'19]).
TimSort

Intuition for TimSort:

\[Q[i].size > Q[i + 1].size + Q[i + 2].size \]

is maintained. Thus stack \(Q \) has logarithmic height; and runtime is \(O(n \log n) \). This is true of the corrected version of [dGRBBH]; they corrected this while developing a formal proof of correctness.

THEOREM (AJNP'18)

TimSort has runtime \(O(n \log m) \). (Proving a conjecture of [Buss-K.'19]).

THEOREM (BUSS-K.'19)

TimSort has worst-case merge cost \(\geq (1.5 - o(1))n \log n \).
Summary of merge costs upper/lower bounds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimSort</td>
<td>$O(n \log m)$</td>
<td>$1.5 \cdot n \log n$ [Buss-K.'19]</td>
</tr>
</tbody>
</table>
| α-stack sort | $O(n \log n)$ [ANP'15] | $c_\alpha \cdot n \log n$ \
| | | $\omega(n \log m)$ [Buss-K.'19] |
| Shivers sort | $n \log n$ [Shivers'02] | $\omega(n \log m)$ [Buss-K.'19] |
| 2-merge sort | $c_2 \cdot n \log m$ [Buss-K.'19] | $c_2 \cdot n \log n$ [Buss-K.'19] |
| α-merge sort | $c_\alpha \cdot n \log m$ [Buss-K.'19] | $c_\alpha \cdot n \log n$ [Buss-K.'19] |

for $\varphi < \alpha \leq 2$. φ is the golden ratio. Bounds are asymptotic.
Summary of merge costs upper/lower bounds

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimSort</td>
<td>$O(n \log m)$</td>
<td>$1.5 \cdot n \log n$ [Buss-K.'19]</td>
</tr>
<tr>
<td>α-stack sort</td>
<td>$O(n \log n)$ [ANP'15]</td>
<td>$c_\alpha \cdot n \log n$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\omega(n \log m)$ [Buss-K.'19]</td>
</tr>
<tr>
<td>Shivers sort</td>
<td>$n \log n$ [Shivers'02]</td>
<td>$\omega(n \log m)$ [Buss-K.'19]</td>
</tr>
<tr>
<td>2-merge sort</td>
<td>$c_2 \cdot n \log m$ [Buss-K.'19]</td>
<td>$c_2 \cdot n \log n$ [Buss-K.'19]</td>
</tr>
<tr>
<td>α-merge sort</td>
<td>$c_\alpha \cdot n \log m$ [Buss-K.'19]</td>
<td>$c_\alpha \cdot n \log n$ [Buss-K.'19]</td>
</tr>
</tbody>
</table>

for $\varphi < \alpha \leq 2$. φ is the golden ratio. Bounds are asymptotic. The constants c_2 and c_α satisfy:

$$c_2 = \frac{3}{\log(27/4)} \approx 1.08897.$$

$$1.042 < c_\alpha \leq c_2$$

for $\varphi < \alpha \leq 2$.

The 2-stack sort can be viewed similar to a "naturalized, adaptive" von Neumann sort.

```python
def two_stack_sort(S, n):
    Q = []
    while not S.empty():
        Q.push(S.pop_run()), l = Q.size
        while Q[l - 2].size < 2 * Q[l - 1].size:
            Q.merge(l - 2, l - 1)
    end
    Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
    return Q[0]
end
```
2-Merge Sort - Intuition

2-merge sort merges either $Q[1 - 3]$ and $Q[1 - 2]$ or merges $Q[1 - 2]$ and $Q[1 - 3]$.

Target invariant: Maintain

$$Q[0].size \geq 2 \times Q[1].size \geq 4 \times Q[2].size \geq \ldots$$
2-Merge Sort - Intuition

2-merge sort merges either \(Q[l - 3] \) and \(Q[l - 2] \) or merges \(Q[l - 2] \) and \(Q[l - 3] \).

Target invariant: Maintain

\[
Q[0].size \geq 2 \times Q[1].size \geq 4 \times Q[2].size \geq ...
\]

Whenever invariant is violated: it will be violated by the top two elements \(Q[l - 2] \) and \(Q[l - 1] \). When this happens, merge \(Q[l - 2] \) with the smaller of \(Q[l - 3] \) and \(Q[l - 1] \).
2-Merge Sort

```python
def two_merge_sort(S, n):
    Q = []
    while S.empty?
        Q.push(S.pop_run()), l = Q.size
        while Q[1 - 2].size < 2 * Q[1 - 1].size do
            if Q[1 - 3].size < Q[1 - 1].size then
                Q.merge(l - 3, l - 2)
            else
                Q.merge(l - 2, l - 1)
            end
        end
        Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
    return Q[0]
end
```
def alpha_merge_sort(S, n, alpha)
 Q = []
 while S.empty?
 Q.push(S.pop_run()), l = Q.size
 while Q[l - 2].size < alpha * Q[l - 1].size
 and Q[l - 3].size < alpha * Q[l - 2].size do
 if Q[l - 3].size < Q[l - 1].size then
 Q.merge(l - 3, l - 2)
 else
 Q.merge(l - 2, l - 1)
 end
 end
 Q.merge(Q.size - 2, Q.size - 1) while Q.size > 1
 return Q[0]
end
Lower/Upper bounds for 2-Merge and α-Merge Sorts

Define $c_2 = \frac{3}{\log(27/4)} \approx 1.08897$.
Define $c_\alpha = \frac{\alpha + 1}{(\alpha+1) \log(\alpha+1) - \alpha \log \alpha}$.

THEOREM (BUSS-K.'19)

1. The worst case merge-cost of 2-merge sort is $(c_2 - o(1)) n \log n$.

Lower/Upper bounds for 2-Merge and α-Merge Sorts

Define $c_2 = 3/\log(27/4) \approx 1.08897$.

Define $c_\alpha = \frac{\alpha + 1}{(\alpha+1) \log(\alpha+1) - \alpha \log \alpha}$.

THEOREM (BUSS-K.'19)

1. The worst case merge-cost of 2-merge sort is $(c_2 - o(1)) n \log n$.

2. The worst case merge-cost of α-merge sort is $(c_\alpha - o(1)) n \log n$.

Lower/Upper bounds for 2-Merge and α-Merge Sorts

Define $c_2 = 3 / \log(27/4) \approx 1.08897$.

Define $c_\alpha = \frac{\alpha + 1}{(\alpha + 1) \log(\alpha + 1) - \alpha \log \alpha}$.

THEOREM (BUSS-K.'19)

1. The worst case merge-cost of 2-merge sort is $(c_2 - o(1))n \log n$.
2. The worst case merge-cost of α-merge sort is $(c_\alpha - o(1))n \log n$.
3. The 2-merge sort has merge-cost $\leq (c_2 + o(1))n \log m$.
Lower/Upper bounds for 2-Merge and α-Merge Sorts

Define $c_2 = \frac{3}{\log(27/4)} \approx 1.08897$.
Define $c_\alpha = \frac{\alpha + 1}{(\alpha + 1) \log(\alpha + 1) - \alpha \log \alpha}$.

THEOREM (BUSS-K.'19)

1. The worst case merge-cost of 2-merge sort is $(c_2 - o(1)) n \log n$.
2. The worst case merge-cost of α-merge sort is $(c_\alpha - o(1)) n \log n$.
3. The 2-merge sort has merge-cost $\leq (c_2 + o(1)) n \log m$.
4. The α-merge sort has merge-cost $\leq (c_\alpha + o(1)) n \log m$.
Subsequent work

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.
Subsequent work

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (JUGE'18)

There is 3-aware algorithm achieving upper bounds and worst-case lower bounds equal to $n \log m$.
Subsequent work

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (JUGE'18)

There is 3-aware algorithm achieving upper bounds and worst-case lower bounds equal to $n \log m$.

Moreover, the upper bounds have the form $(1 + o(1))nH$, where H is the entropy-based optimum, non-stable merge-cost.
Subsequent work

THEOREM (MW'18)

There is a stable merge sorting algorithm similar to 3-aware algorithms achieving upper bounds and worst-case lower bounds equal to $n \log m$.

THEOREM (JUGE'18)

There is 3-aware algorithm achieving upper bounds and worst-case lower bounds equal to $n \log m$.

Moreover, the upper bounds have the form $(1 + o(1))nH$, where H is the entropy-based optimum, non-stable merge-cost.

THEOREM (JUGE, P.C.)

The 1.5 lower bound for TimSort is asymptotically tight.
Experimental results

![Graph showing normalized merge cost vs number of runs for different sorting algorithms]

- Shivers sort
- adaptive Shivers sort
- Timsort
- 1.62-stack sort
- 1.62-merge sort
- 2-stack sort
- 2-merge sort

Stable Merge Sorting

Sam Buss, Alexander Knop
Experimental results

We generate \(m \) runs:
Experimental results

We generate m runs: with probability 0.95 the run has uniformly random length from 1 to 100, and
Experimental results

We generate m runs: with probability 0.95 the run has uniformly random length from 1 to 100, and with probability 0.05 the run has uniformly random length from 10^4 to 10^5.
Future Work / Open Questions?

- Would it be worthwhile/possible to collect real-world data to choose the best-in-practice merge sort algorithm? E.g., with only a small overhead, this could be done globally on smartphones.
- Explain the behavior of the algorithms during the simulation.