1. (10 points) Show that the set \(\{0, 1\} \times [n] \) has cardinality 2\(n \).
2. (10 points) Let us consider group theory, it is a theory with undefined terms: group-element and times (if \(a \) and \(b \) are group elements, we denote \(a \) times \(b \) by \(a \cdot b \)), and axioms:

1. \((a \cdot b) \cdot c = a \cdot (b \cdot c)\) for every group-elements \(a, b, \) and \(c \);
2. there is a unique group-element \(e \) such that \(e \cdot a = a = a \cdot e \) for every group-element \(a \) (we say that such an element is the identity element);
3. for every group-element \(a \) there is a group-element \(b \) such that \(a \cdot b = e \), where \(e \) is the identity element;
4. for every group-element \(a \) there is a group-element \(b \) such that \(b \cdot a = e \), where \(e \) is the identity element.

Let \(e \) be the identity element. Show the following statements

- if \(b_0 \cdot a = b_1 \cdot a = e \), then \(b_0 = b_1 \), for every group-elements \(a, b_0, \) and \(b_1 \).
- if \(a \cdot b_0 = a \cdot b_1 = e \), then \(b_0 = b_1 \), for every group-elements \(a, b_0, \) and \(b_1 \).
- if \(a \cdot b_0 = b_1 \cdot a = e \), then \(b_0 = b_1 \), for every group-elements \(a, b_0, \) and \(b_1 \).