1. (50 points) Check all the correct statements (in this question only the answers will be graded).

- gcd(24, 18) = 6.
- The function $f : [-\frac{\pi}{2}, \frac{\pi}{2}] \to \mathbb{R}$ such that $f(x) = \arctan x$ is a bijection.
- The cardinality of the set $F(X, [3]) = (4^n)^3$, where $X = F([4], [n])$.
- The cardinality of the set $I([3], [n]) = n(n - 1)(n - 2)$.
- $\binom{10}{2} = 90$.

Solution:

1. Note that $D(24) = \{1, 2, 3, 4, 6, 8, 12, 24\}$ and $D(18) = \{1, 2, 3, 6, 9, 18\}$. Hence, $\gcd(24, 18) = 6$.

2. No it is not a bijection since \arctan is increasing function, hence, the value of $\text{Im} f \subseteq [f(-\frac{\pi}{2}), f(\frac{\pi}{2})]$.

3. The cardinality of the set $X = F([4], [n])$ is equal to n^4, hence, the cardinality of the set $F(X, [3])$ is equal to $3n^4$.

4. $\binom{10}{2} = \frac{10 \cdot 9}{2 \cdot 1} = 45$.

2. (a) (5 points) Let \(n \), \(a \), and \(b \) be some integers. Show that if two numbers \(a \) and \(b \) have the same reminders when divided by \(n \), then \(a - b \) is divisible by \(n \).

Solution: There are integers \(k \), \(\ell \) and \(r \) such that \(a = kn + r \) and \(a = \ell n + r \) since \(a \) and \(b \) have the same reminder when divided by \(n \).

Note that \(a - b = (k - \ell)n \), hence, is divisible by \(n \).

(b) (5 points) Prove that for every integers \(a_1, \ldots, a_n \) there are \(k > 0 \) and \(\ell \geq 0 \) such that \(k + \ell \leq n \) and \(\sum_{i=k}^{k+\ell} a_i \) is divisible by \(n \).

Solution: Let us consider the function \(f : \{0,1,\ldots,n\} \to \{0,1,\ldots,n-1\} \) such that \(f(i) \) is equal to the reminder of \(\sum_{j=1}^{i} a_j \) (if \(i < 1 \), the sum is equal to 0) when divided by \(n \). By the pigeonhole principle there are \(i_0 < i_1 \) such that \(f(i_0) = f(i_1) \); hence, \(f(i_1) - f(i_0) = \sum_{j=1}^{i_1} a_j - \sum_{j=1}^{i_0} a_j = \sum_{j=i_0+1}^{i_1} a_j \) is divisible by \(n \).
3. (10 points) We say that sets \(A_1, A_2, \) and \(A_3 \) are pairwise disjoint iff \(A_i \cap A_j = \emptyset \) for every \(i \neq j \in [3] \).

Construct a bijection from \(\{0, 1, 2, 3\}^n \) to \(\{(A, B, C) \mid A, B, C \subseteq [n] \text{ and } A, B, C \text{ are pairwise disjoint}\} \).

Solution: Let us consider the function \(f : \{0, 1, 2, 3\}^n \to \{(A, B, C) \mid A, B, C \subseteq [n] \text{ and } A, B, C \text{ are pairwise disjoint}\} \) such that \(f(x_1, \ldots, x_n) = (A_x, B_x, C_x) \), where \(A_x = \{i \in [n] \mid x_i = 1\} \), \(B_x = \{i \in [n] \mid x_i = 2\} \), \(C_x = \{i \in [n] \mid x_i = 3\} \).

It is easy to see that the function is a bijection since we may define the inverse of this function \(e : \{(A, B, C) \mid A, B, C \subseteq [n] \text{ and } A, B, C \text{ are pairwise disjoint}\} \to \{0, 1, 2, 3\}^n \) such that \(e(A, B, C) = (x_1, \ldots, x_n) \), where \(x_i = \begin{cases} 1 & \text{if } i \in A \\ 2 & \text{if } i \in B \\ 3 & \text{if } i \in C \\ 0 & \text{otherwise} \end{cases} \).

- Let \(f(e(A, B, C)) = (A', B', C') \) and \(e(A, B, C) = (x_1, \ldots, x_n) \). Note that \(x_i = 1 \) iff \(i \in A \) and \(i \in A' \) iff \(x_i = 1 \); hence \(i \in A \) iff \(i \in A' \). In other words, \(A = A' \). Similarly we may consider other cases (we use the fact that \(A, B, \) and \(C \) to show that constraints in the definition of \(e \) cannot be satisfied simultaneously).

- Let \(e(f(x_1, \ldots, x_n)) = (x'_1, \ldots, x'_n) \) and \(f(x_1, \ldots, x_n) = (A, B, C) \). Note that \(i \in A \) iff \(x_i = 1 \) and \(x'_i = 1 \) iff \(i \in A \); hence \(x_i = 1 \) iff \(x'_i = 1 \). Similarly we may prove for 0, 2, and 3 and as a result, we proved that \(x_i = x'_i \).
4. (10 points) How many numbers from \([999]\) are not divisible neither by 3, nor by 5, nor by 7.

Solution: Let \(S_n = \{i \in [999] \mid \text{i is divisible by n}\}\). Note that \(S_3 \cap S_5 = S_{15}\), \(S_3 \cap S_7 = S_{21}\), \(S_5 \cap S_7 = S_{35}\), and finally, \(S_3 \cap S_5 \cap S_7 = S_{105}\). Additionally, \(|S_3| = \frac{999}{3} = 333\), \(|S_5| = \frac{999}{5} = 199\), \(|S_7| = \frac{999}{7} = 142\), \(|S_{15}| = \frac{999}{15} = 66\), \(|S_{21}| = \frac{999}{21} = 47\), \(|S_{35}| = \frac{999}{35} = 28\), and \(|S_{105}| = \frac{999}{105} = 9\). As a result, by the inclusion-exclusion principle, the answer is \(999 - 333 - 199 - 142 + 66 + 47 + 28 - 9 = 457\).
5. (10 points) Let m be some integer. Show that product of m consecutive integers is divisible by $m!$.

Solution: In other words we need to show that for any integer n, \(\frac{n(n+1)\cdots(n+m-1)}{m!} \) is an integer. But one may notice that \(\frac{n(n+1)\cdots(n+m-1)}{m!} = \binom{n+m-1}{m} \) which is an integer.