1. Prove that \(1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2} \leq 2\).

Solution: Let us prove a stronger statement:

\[
1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \leq 2 - \frac{1}{n}.
\]

The base case is clear. We prove now the induction step. By the induction hypothesis the following inequality holds

\[
1 + \frac{1}{2^2} + \cdots + \frac{1}{(n-1)^2} \leq 2 - \frac{1}{n-1}.
\]

Hence,

\[
1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \leq 2 - \frac{1}{n-1} + \frac{1}{n^2} = 2
\]

but \(\frac{1}{n-1} - \frac{1}{n^2} \geq \frac{1}{n}\). Indeed, \(\frac{1}{n-1} \geq \frac{n+1}{n^2}\) is equivalent to \(\frac{1}{(n-1)^2} \geq \frac{1}{n^2}\) which is true. As a result we proved the induction step.
2. Show that \((1 + x)^n \geq 1 + nx\) for every \(n \in \mathbb{N}\) and \(x \geq -1\).

Solution: We are going to prove that by induction by \(n\).

The induction step is clear. We prove now the induction step. Assume the induction hypothesis: \((1 + x)^n \geq 1 + nx\). Note that \((1 + x)^{n+1} \geq (1 + nx) \cdot (1 + x) = 1 + nx + x + nx^2 \geq 1 + (n + 1)x\). Which proves the induction step.
3. There are irrational numbers a and b such that a^b is rational.

Solution: Assume that a^b is irrational for all irrationals a and b. Since $\sqrt{2}$ is irrational, $\sqrt[3]{\sqrt{2}}$ is also irrational. However, $(\sqrt[3]{\sqrt{2}})^3 = \sqrt{2} = 2$, which contradicts the assumption. As a result, there are irrational a and b such that a^b is rational.
4. If \(a, b \in \mathbb{Z} \), then \(a^2 - 4b + 2 \neq 0 \).

Solution: Assume, for the sake of contradiction, that such \(a \) and \(b \) exist. Note that \(a^2 = 4b + 2 \), hence, \(a \) is even but \(a \) is not divisible for 4 which is a contradiction.