Show all of your work. Full credit will be given only for answers with explanations.

1. (10 points) Find the maximum and minimum values of \(f(x, y) = 4x^2 + 10y^2 \) on the disk \(x^2 + y^2 \leq 4 \).
2. (10 points) Find $\int\int_{R} x^2 + y^2 + xy\,dA$, where $R = [0,1] \times [1,2]$.
3. Consider the plane P with equation $z = 6x - 3y + 2$.

(a) (10 points) Find the equation of a plane parallel to P and passing through the point $(1, 0, -1)$.

(b) (10 points) For which value of a is the vector $\langle -2, 1, a \rangle$ normal to the plane?
4. Let $f(x, y) = \sin(x) + \sin(y)$.

 (a) (5 points) Find the tangent planes at $\langle \pi, \pi, 0 \rangle$ and $\langle \pi/2, \pi/2, 2 \rangle$.

 (b) (5 points) Check if these planes are intersecting; if they are intersecting, find symmetric equations for the line of intersection of the planes.
5. Let \(f(x, y) = 2xy \) and \(g(x, y) \) be the maximum value of \(D_u f(x, y) \) over all unit vectors \(u \).

(a) (10 points) Find the value of \(g(1, 3) \).

(b) (10 points) Find and classify all the critical points of \(g(x, y) \).
6. Let \(r = (u + v, u + v^2, u^2 + v) \), where \(u = \cos(x) + \cos(\pi \cdot y) \) and \(v = \sin(xy) \).

(a) (5 points) Find \(\frac{\partial r}{\partial x} \) and \(\frac{\partial r}{\partial y} \).

(b) (5 points) Find the tangent plane of the surface described by the vector function \(r \) for \(x = \frac{\pi}{2} \) and \(y = 1 \).
7. (10 points) Find the linear approximation of the function \(f(x, y) = x^2 + yx \) at \((1, -1)\).