Show all of your work. Full credit will be given only for answers with explanations.

1. (50 points) Check all the correct statements.
 - The tangent plane of the function \(f(x, y) = xe^y + ye^x \) at \((1, 1, 2e)\) is defined by the equation
 \[2ex + 2ey = z + 2e. \]
 - The angle between \(\frac{\partial f(\pi, 0)}{\partial x} \) and \(\frac{\partial f(\pi, 0)}{\partial y} \) is \(\pi/2 \), where \(f(x, y) = \cos(x) + \sin(y) \).
 - If \(z = x^2 + y^2, \ x = \sin(t), \) and \(y = \cos(t) \), then \(\frac{dz}{dt} = 0 \)
 - The tangent planes of \(f(x, y) = x^2 + y^2 \) at \((1, 0, 1)\) and \((0, 1, 1)\) are parallel.
 - The vector \(\langle 1, -1, 1 \rangle \) is perpendicular to \(\frac{df(\pi)}{dt} \) and \(\frac{df(\pi/2)}{dt} \), where \(f(t) = \langle \cos(t), \sin(t), t \rangle \).
2. Let \(r = (x^y, y^x) \), where \(x = e^t \), and \(y = t^2 \).

(a) (5 points) Find \(\frac{dr}{dt} \).

(b) (5 points) Find the tangent line of the curve described by the vector function \(r \) for \(t = 1 \).
3. Let \(f(x, y) = xy^2 + yx^2 \).

(a) (5 points) Find the tangent planes to the surface defined by \(f \) at \((1, 1, 2)\) and \((-1, -1, -2)\).

(b) (5 points) Check if these planes are intersecting; if they are intersecting, find symmetric equations for the line of intersection of the planes.
4. Let us consider a surface defined by implicitly the equation

\[x^3 + y^3 + z^3 + 6xyz = 1. \]

Find the tangent plane of the surface at \((1, -3, -3)\).