1. (10 points) Let \(a_n \) be a sequence such that \(a_1 = 9, a_2 = 41, \) and \(a_{n+2} = 9a_{n+1} - 20a_n. \) Show that \(a_n = 4^n + 5^n. \)
2. We say that L is a list of powers of x iff

- either $L = x^k$ for some positive integer k or
- $L = (x^k, L')$ where L' is a list of powers of x and k is a positive integer.

Let L be a list of powers of x. We say that the sum of L with $x = v$ denoted by $\sum L|_{x=v}$

- is equal to v^k whether $L = x^k$ and
- is equal to $v^k + \sum L'|_{x=v}$ whether $L = (x^k, L')$.

Prove that for any list L of powers of x there is a polynomial such that $\sum L|_{x=v} = p(v)$ for all real numbers v.

3. (10 points) Prove that \(\sum_{i=1}^{n} (i+1)2^i = n2^{n+1} \) for all integers \(n \geq 1 \).