1. (10 points) Let us define a union of more than two sets as follows. Let A_1, \ldots, A_n be some sets. Then

- $\bigcup_{i=1}^1 A_i = A_1$ and
- $\bigcup_{i=1}^{k+1} A_i = \left(\bigcup_{i=1}^k A_i \right) \cup A_{k+1}$.

Show that $\bigcup_{i=1}^n [i] = [n]$ for all integers $n > 0$.

Solution: First, note that $[k - 1] \cup [k] = [k]$ for any $k > 1$.

Now we are ready to prove the statement, we prove it using induction by n. The base case is true since $\bigcup_{i=1}^1 [i] = [1]$ by the definition. The induction step is also true since by the induction hypothesis $\bigcup_{i=1}^{k-1} [i] = [k - 1]$ and by the definition of the union $\bigcup_{i=1}^k [i] = \bigcup_{i=1}^{k-1} [i] \cup [k]$. Hence, $\bigcup_{i=1}^k [i] = \bigcup_{i=1}^{k-1} [i] \cup [k] = [k - 1] \cup [k] = [k]$.
2. (10 points) Let us define an intersection of more than two sets as follows. Let \(A_1, \ldots, A_n \) be some sets. Then

- \(\bigcap_{i=1}^{1} A_i = A_1 \) and
- \(\bigcap_{i=1}^{k+1} A_i = \left(\bigcap_{i=1}^{k} A_i \right) \cap A_{k+1} \).

Show that \(\bigcap_{i=1}^{n} \{x \in \mathbb{N} : i \leq x \leq n\} = \{n\} \) for all integers \(n > 0 \).

Solution: There are two solutions for this problem which provide two important points of view.

1. We may prove the statement using induction by \(k \). Note that the statement does not involve \(k \) so we need to prove a bit different statement, we prove \(\bigcap_{i=1}^{k} \{x \in \mathbb{N} : i \leq x \leq n\} = \{k, k + 1, \ldots, n\} \). The base case for \(k = 1 \) is clear since \(\bigcap_{i=1}^{1} \{x \in \mathbb{N} : i \leq x \leq n\} = \{x \in \mathbb{N} : 1 \leq x \leq n\} = \{1, 2, \ldots, n\} \).

 The induction step is also easy to see. By the induction hypothesis \(\bigcap_{i=1}^{k} \{x \in \mathbb{N} : i \leq x \leq n\} = \{k, k + 1, \ldots, n\} \). Note that

 \[
 \bigcap_{i=1}^{k+1} \{x \in \mathbb{N} : i \leq x \leq n\} = \bigcap_{i=1}^{k} \{x \in \mathbb{N} : i \leq x \leq n\} \cap \{x \in \mathbb{N} : k + 1 \leq x \leq n\} = \{k, k + 1, \ldots, n\} \cap \{k + 1, \ldots, n\} = \{k + 1, \ldots, n\}.
 \]

 Thus for \(k = n \), \(\bigcap_{i=1}^{n} \{x \in \mathbb{N} : i \leq x \leq n\} = \{n\} \).

2. Another approach is to prove the statement using induction by \(n \). The base case is also clear, \(\bigcap_{i=1}^{1} \{x \in \mathbb{N} : i \leq x \leq 1\} = \{1\} \).

 Let us now prove the induction step. By the induction hypothesis \(\bigcap_{i=1}^{k} \{x \in \mathbb{N} : i \leq x \leq k\} = \{k\} \). Hence,

 \[
 \bigcap_{i=1}^{k} \{x \in \mathbb{N} : i \leq x \leq k + 1\} = \bigcap_{i=1}^{k} \{x \in \mathbb{N} : i \leq x \leq k\} \cup \{k + 1\} = \{k, k + 1\};
 \]

 note that all these equalities are clear except the equality marked by *, we prove it later.
Thus by the definition of the union
\[
\bigcap_{i=1}^{k+1}\{x \in \mathbb{N} : i \leq x \leq k + 1\} = \\
\bigcap_{i=1}^{k}\{x \in \mathbb{N} : i \leq x \leq k + 1\} \cap \{x \in \mathbb{N} : k + 1 \leq x \leq k + 1\} = \\
\bigcap_{i=1}^{k}\{x \in \mathbb{N} : i \leq x \leq k + 1\} \cap \{k + 1\} = \\
\{k, k + 1\} \cap \{k + 1\} = \{k + 1\}.
\]

Now we need to prove that if \(A_1, \ldots, A_\ell,\) and \(B\) are some sets, then \(\bigcap_{i=1}^{\ell}(A_i \cup B) = (\bigcap_{i=1}^{\ell} A_i) \cup B.\) We prove it also using induction by \(\ell.\) For \(\ell = 1,\) the statement is clear since \(\bigcap_{i=1}^{1}(A_i \cup B) = A_1 \cup B = (\bigcap_{i=1}^{1} A_i) \cup B.\) Now we need to check the induction step. By the induction hypothesis
\[
\bigcap_{i=1}^{k}(A_i \cup B) = (\bigcap_{i=1}^{k} A_i) \cup B.
\]
Note that
\[
\bigcap_{i=1}^{k+1}(A_i \cup B) = \bigcap_{i=1}^{k}(A_i \cup B) \cap (A_{k+1} \cup B) = \\
\left(\bigcap_{i=1}^{k} A_i \right) \cup B \cap (A_{k+1} \cup B) = \\
\left(\bigcap_{i=1}^{k} A_i \right) \cap A_{k+1} \cup B = \left(\bigcap_{i=1}^{k+1} A_i \right) \cup B.
\]