1. (a) (10 points) Let ϕ, ψ, and χ be propositional formulas on Ω. Show that \[(\phi \lor (\psi \land \chi)) \iff ((\phi \lor \psi) \land (\phi \lor \chi))\] for any assignment ρ to the variables Ω.

(b) (10 points) Let $\psi_{1,1}, \ldots, \psi_{1,n}$, $\psi_{2,1}, \ldots, \psi_{2,m}$ be propositional formulas on Ω. Let $\phi_1 = \bigwedge_{i=1}^n \psi_{1,i}$ and $\phi_2 = \bigwedge_{j=1}^m \psi_{2,j}$.
Show that \[(\phi_1 \lor \phi_2) \iff (\bigwedge_{i=1}^n \bigwedge_{j=1}^m (\psi_{1,i} \lor \psi_{2,j}))\] for any assignment ρ to the variables Ω.

(c) (10 points) Let Ω be a set of variables. We say that a propositional formula is a literal if the formula is equal to x or $\neg x$ for $x \in \Omega$.
We say that a propositional formula on Ω is in conjunctive normal form if it is equal to $\bigwedge_{i=1}^n \bigvee_{j=1}^{m_i} \psi_{i,j}$, where $\psi_{i,j}$ is a literal.
Let ϕ be a propositional formula on Ω. Show using structural induction that there is a propositional formula ψ on Ω in conjunctive normal form such that $\psi \iff \phi \iff \phi$ for any assignment ρ to Ω.