Lecture 1 Mathematical Induction

Theorem (Induction Principle)
Let \(P(n) \) be some statement about a positive integer \(n \).
\(P(n) \) is true for all positive integers \(n \) iff
- \(P(1) \) is true and
- \(P(k) \) implies \(P(k+1) \).
Example Show that \(\int_{0}^{\infty} x^n e^{-x} \, dx = n! \)

Proof Let's start from proving the base case, i.e.

\[\int_{0}^{\infty} x e^{-x} \, dx = 1 \]

Note that \(\int_{0}^{\infty} x e^{-x} = x (-e^{-x}) \bigg|_{0}^{\infty} - \int_{0}^{\infty} 1 \cdot (-e^{-x}) = \]

\[= 0 + \int_{0}^{\infty} e^{-x} \, dx = (-e^{-x}) \bigg|_{0}^{\infty} = 1 \]
Now we are ready to prove the induction step from n to $n+1$.

The induction hypothesis is that

$$\int_0^\infty x^n e^{-x} \, dx = n!$$

$$\int_0^\infty x^{n+1} e^{-x} \, dx = x^{n+1} \bigg|_0^\infty - \int_0^\infty (n+1)x^n e^{-x} \, dx =$$

$$= 0 + (n+1) \int_0^\infty x^n e^{-x} \, dx = (n+1)! \uparrow$$

by the I.H.
Exercise: Show that
\[\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1 \]

The induction step is clear since

\[1 \cdot 1! = 2 \cdot 1 - 1. \]

Let us prove the induction step.

By the induction hypothesis, \(\sum_{k=1}^{n} k \cdot k! = (n+1)! - 1 \)

Hence, \(\sum_{k=1}^{n+1} k \cdot k! = \sum_{k=1}^{n} k \cdot k! + (n+1) \cdot (n+1)! = \)

\[= (n+1)! - 1 + (n+1) \cdot (n+1)! = (n+1)! \cdot (n+1+1)! - 1 = \]

\[= (n+2)! - 1 \]
Exercise: Show that
\[\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 \]

It's enough to show that \[\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n} \]
since \[2 - \frac{1}{n} < 2 \].

We prove this using induction by \(n \).

The base case is true since \(\frac{1}{1} \leq 2 - 1 \).

Let us now prove the induction step from \(n \) to \(n+1 \). By the induction hypothesis,
\[\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n} \].

Note that \[\sum_{i=1}^{n+1} \frac{1}{i^2} = \]
\[= \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2} \leq 2 - \frac{1}{n} + \frac{1}{(n+1)^2} = \]
\[= 2 - \left(\frac{n^2 + 2n + 1 - n}{n(n+1)^2} \right) = 2 - \frac{1}{n+1} \left(\frac{n^2 + n + 1}{n(n+1)} \right) \leq \]
\[\leq 2 - \frac{1}{n+1} \]