1. (10 points) Let us formulate the pigeonhole principle using propositional formulas. \(\Omega = \{x_{1,1}, \ldots, x_{n+1,1}, x_{1,2}, \ldots, x_{n+1,n}\} \) (informally \(x_{i,j} \) is true iff the \(i \)th pigeon is in the \(j \)th hole). Consider the following propositional formulas on the variables from \(\Omega \).

- \(L_i \) (\(i \in [n+1] \)) is equal to \(\bigvee_{j=1}^{n+1} x_{i,j} \). (Informally this formula says that the \(i \)th pigeon is in a hole.)

- \(R_j \) (\(j \in [n] \)) is equal to \(\bigvee_{i=1}^{n+1} \bigvee_{i_2=i_1+1}^{n+1} (x_{i_1,j} \land x_{i_2,j}) \). (Informally this formula says that there are two pigeons in the \(j \)th hole.)

Show that there is a natural deduction proof of \(\left(\bigwedge_{i=1}^{n+1} L_i \right) \Rightarrow \left(\bigvee_{i=1}^{n} R_i \right) \).
2. (10 points) Let $\phi = \bigvee_{i=1}^{m} \lambda_i$ be a clause; we say that the width of the clause is equal to m. Let $\phi = \bigwedge_{i=1}^{\ell} \chi_i$ be a formula in CNF; we say that the width of ϕ is equal to the maximal width of χ_i for $i \in [\ell]$. Let $p_n : \{T,F\}^n \rightarrow \{T,F\}$ such that $p_n(x_1, \ldots, x_n) = T$ iff the set $\{i : x_i = T\}$ has odd number of elements. Show that any CNF representation of p_n has width at least n.

3. (10 points) Write a natural deduction derivation of \((W \lor Y) \implies (X \lor Z)\) from hypotheses \(W \implies X\) and \(Y \implies Z\).
4. (10 points) We say that a clause C can be obtained from clauses A and B using the *resolution* rule if
$C = A' \lor B'$, $A = x \lor A'$, and $B = \neg x \lor B'$, for some variable x.

We say that a clause C can be derived from clauses A_1, \ldots, A_m using resolutions if there is a sequence of clauses $D_1, \ldots, D_\ell = C$ such that each D_i

- is either obtained from clauses D_j and D_k for $j, k < i$ using the *resolution* rule, or
- is equal to A_j for some $j \in [m]$, or
- is equal to $D_j \lor E$ for some $j < i$ and a clause E.

Show that if A_1, \ldots, A_m semantically imply C, then C can be derived from clauses A_1, \ldots, A_m using resolutions.