1. Let ℓ_1, \ldots, ℓ_k be some nonnegative numbers such that $\ell_1 + \cdots + \ell_k = \ell$. Find the number of weak compositions (in terms of ℓ, k, and n) (a_1, \ldots, a_k) of n into k such that $a_i \geq \ell_i$.

Solution: Note that the problem is equivalent to the problem of placing n identical balls into k different boxes so that ith box has at least ℓ_i balls inside.

Let us put in advance ℓ_i balls into the ith box for all $i \in [n]$. After this we have $n - \ell$ balls left to place into k boxes and there are $\binom{n-\ell+k-1}{k-1}$ ways to do this.
2. Let \(n \) be a natural number.

(a) Find an explicit formula for \(S(n, n - 2) \).

Solution: Note that there are two types of partition of \([n]\) into \(n - 2 \) parts:

1. all the parts have size 1 except two of size 2,
2. all the parts have size 1 except one that has size 3.

It is easy to see that there are \(\binom{n}{3} \) partitions of the second kind, and there are \(\frac{1}{2} \binom{n}{2} \binom{n-2}{2} \) partitions of the first kind. Therefore \(S(n, n - 2) = \frac{1}{2} \binom{n}{2} \binom{n-2}{2} + \binom{n}{3} \).

(b) Find an explicit formula for \(S(n, 3) \).

Solution: In this problem it is easier to find the number of surjections from \([n]\) to \([3]\). There are \(3^n \) functions from \([n]\) to \([3]\), there are \(3 \cdot 2^n \) functions from \([n]\) to \([3]\) such that the image has 2 elements, and there are 3 functions such that their image has 1 element. Therefore, by the inclusion-exclusion principle, there are \(3^n - 3 \cdot 2^n + 3 \) surjections from \([n]\) to \([3]\). As a result, \(S(n, 3) = \frac{1}{6} (3^n - 3 \cdot 2^n + 3) \).
3. How many numbers must be selected from the set \([6]\) to guarantee that at least one pair of these numbers add up to 7?

\[
\textbf{Solution:} \quad \text{Let us split the numbers from \([6]\) into 3 pairs:}
\]

1. 1 and 6,
2. 2 and 5,
3. 3 and 4.

Note that the sum within the pair is 7. Is is also easy to see that, by the pigeonhole principle, if we pick 4 numbers out of \([6]\), two of them are in the same pair. Therefore whenever we choose 4 numbers two of them sum up to 7.

It is also easy to see that we may select 3 numbers so that the sum of any two of them is not equal to 7. For example, we may select 1, 2, and 3.
4. Show that \(\int_{0}^{\infty} x^n e^{-x} \, dx = n! \) for all \(n \geq 0 \).

Solution: We prove the statement using induction by \(n \). The base case is for \(n = 0 \). It is easy to see that \(\int_{0}^{\infty} e^{-x} \, dx = (-e^{-x})\big|_{0}^{\infty} = 1 \).

Let us prove the induction step from \(k \) to \(k + 1 \). By the induction hypothesis, \(\int_{0}^{\infty} x^k e^{-x} \, dx = k! \).

Note that

\[
\int_{0}^{\infty} x^{k+1} e^{-x} \, dx = \left[-x^{k+1} e^{-x}\right]_{0}^{\infty} + \int_{0}^{\infty} (k+1)x^k e^{-x} \, dx = (k+1)!.
\]