1. (a) (40 points) Let $X = 2^{\{1,\ldots,5\}}$, $Y = \{3,4\}$, and R be a relation on X such that

$$aRb \iff a \cup Y = b \cup Y.$$

Is R an equivalence relation on X?

(b) (10 points) Let $X = \mathbb{R}$ and R be a relation on X such that

$$xRy \iff x - y \in \mathbb{Z}.$$

Is R an equivalence relation on X?
2. (50 points) Let $X = \mathbb{Z} \times \mathbb{R}$ and R be a relation on X such that

$$(x_1, y_1)R(x_2, y_2) \iff (x_1 \leq x_2 \lor (x_1 = x_2 \land y_1 \leq y_2)).$$

Is R a partial order on X?
3. (50 points) Let p be a polynomial of even degree. Is it possible that p is a bijection from \mathbb{R} to \mathbb{R}?
4. (a) (40 points) Assume that a person invests 2000$ at 14 percent interest rate compounded annually. Let A_n represent the amount at the end of n years. Find a recurrence relation for A_n.

(b) (10 points) Let S_n denotes the number of n-bit strings that does not contain 00 as a substring. Find a recurrence relation for S_n.