Matrix operations

Authors: Alexander Knop

Institute: UC San Diego
Special Matrices

The scalar entry in the i^{th} row and j^{th} column of A is denoted $a_{i,j}$ and is called the (i,j)-entry if A.

- A diagonal matrix is a square $n \times n$ matrix whose nondiagonal entries are zero.

- A zero matrix is $m \times n$ matrix with all entries are equal to zero.
Special Matrices

- The scalar entry in the \(i\)th row and \(j\)th column of \(A\) is denoted \(a_{i,j}\) and is called the \((i,j)\)-entry if \(A\).
- **diagonal entries** in a \(m \times n\) matrix \(A = [a_{i,j}]\) are \(a_{1,1}, a_{2,2}, \ldots\) and they form the **main diagonal** of \(A\).
Special Matrices

- The scalar entry in the \(i\)th row and \(j\)th column of \(A\) is denoted \(a_{i,j}\) and is called the \((i,j)\)-entry if \(A\).
- **diagonal entries** in a \(m \times n\) matrix \(A = [a_{i,j}]\) are \(a_{1,1}, a_{2,2}, \ldots\) and they form the **main diagonal** of \(A\).
- A **diagonal matrix** is a square \(n \times n\) matrix whose nondiagonal entries are zero.
Special Matrices

- The scalar entry in the \(i\)th row and \(j\)th column of \(A\) is denoted \(a_{i,j}\) and is called the \((i,j)\)-entry if \(A\).
- **diagonal entries** in a \(m \times n\) matrix \(A = [a_{i,j}]\) are \(a_{1,1}, a_{2,2}, \ldots\) and they form the **main diagonal** of \(A\).
- A **diagonal matrix** is a square \(n \times n\) matrix whose nondiagonal entries are zero. Note that identity matrix is diagonal matrix.
Special Matrices

- The scalar entry in the ith row and jth column of A is denoted $a_{i,j}$ and is called the (i, j)-entry if A.
- **diagonal entries** in a $m \times n$ matrix $A = [a_{i,j}]$ are $a_{1,1}$, $a_{2,2}$, ...and they form the **main diagonal** of A.
- A **diagonal matrix** is a square $n \times n$ matrix whose nondiagonal entries are zero. Note that identity matrix is diagonal matrix.
- A **zero matrix** is $m \times n$ matrix with all entries are equal to zero.
Sums

DEFINITION

If A and B are $m \times n$ matrices, then the sum $A + B$ is the $m \times n$ matrix whose columns are the sum of the corresponding columns of A and B.

EXAMPLE

Let $A = \begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $A + B = \begin{bmatrix} 5 & 1 & 5 \\ 2 & 8 & 9 \end{bmatrix}$.

Sums

DEFINITION

If A and B are $m \times n$ matrices, then the sum $A + B$ is the $m \times n$ matrix whose columns are the sum of the corresponding columns of A and B.

EXAMPLE

Let $A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $A + B = \begin{bmatrix} 5 & 1 & 5 \\ 2 & 8 & 9 \end{bmatrix}$.
Scalar Multiples

DEFINITION

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

EXAMPLE

Let $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $2B = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$.
Scalar Multiples

DEFINITION

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

EXAMPLE

Let $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$.

MATRICES | Alexander Knop
Scalar Multiples

DEFINITION

If \(r \) is a scalar and \(A \) is a matrix, then the scalar multiple \(rA \) is the matrix whose columns are \(r \) times the corresponding columns in \(A \).

EXAMPLE

Let \(B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} \). Then \(2B = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix} \).
Matrix Multiplication
Matrix Multiplication

\[
A (Bx) = Bx
\]
Matrix Multiplication

\[x \rightarrow Bx \rightarrow A(Bx) \]
Matrix Multiplication
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$.

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1; \ldots; Ab_p]$ is a matrix of size $m \times p$.

MATRICES OPERATIONS | Alexander Knop
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, \ldots, b_p columns of B and x_1, \ldots, x_p entries of x. \[\text{Note that } Bx = x_1b_1 + \ldots + x_pb_p.\] By linearity of multiplication $A(Bx) = x_1Ab_1 + \ldots + x_pAb_p$.

DEFINITION

If A is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1; \ldots; Ab_p]$ is a matrix of size $m \times p$.

MATRIX OPERATIONS | Alexander Knop
Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, \ldots, b_p columns of B and x_1, \ldots, x_p entries of x. Note that $Bx = x_1 b_1 + \ldots + x_p b_p$.
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, ..., b_p columns of B and x_1, ..., x_p entries of x. Note that $Bx = x_1 b_1 + \ldots x_p b_p$.

By linearity of multiplication $A(Bx) = x_1 Ab_1 + \cdots + x_p Ab_p$.
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, \ldots, b_p columns of B and x_1, \ldots, x_p entries of x. Note that $Bx = x_1 b_1 + \ldots + x_p b_p$. By linearity of multiplication $A(Bx) = x_1 Ab_1 + \cdots + x_p Ab_p$.

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.
Matrix Multiplication

DEFINITION

If A is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.
Matrix Multiplication

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.

EXAMPLE

Let us compute AB where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.
Matrix Multiplication

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.

EXAMPLE

Let us compute AB where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.

$$Ab_1 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ -1 \end{bmatrix}, \quad Ab_2 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 10 \\ 13 \end{bmatrix}, \quad Ab_3 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 21 \\ -9 \end{bmatrix}.$$
Row-Column Rule

THEOREM

*If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.***
Row-Column Rule

THEOREM

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.

In other words if $(AB)_{i,j}$ denotes (i,j)-entry of AB and A is $m \times n$ matrix, then

$$a_{i,1}b_{1,j} + \cdots + a_{i,n}b_{n,j}.$$
Row-Column Rule

THEOREM

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.

In other words if $(AB)_{i,j}$ denotes (i,j)-entry of AB and A is $m \times n$ matrix, then

$$a_{i,1}b_{1,j} + \cdots + a_{i,n}b_{n,j}$$

THEOREM

1. $A(BC) = (AB)C$
2. $A(B + C) = AB + AC$
3. $r(AB) = (rA)B = A(rB)$
Powers of Matrix

DEFINITION

If A is $n \times n$ matrix, then A^k denotes the product of k copies of A.
The Transpose of Matrix

DEFINITION

If A is $m \times n$ matrix, then the **transpose** of A, denoted by A^T is a matrix whose columns are formed from the corresponding rows of A.
The Transpose of Matrix

DEFINITION

If A is $m \times n$ matrix, then the **transpose** of A, denoted by A^T is a matrix whose columns are formed from the corresponding rows of A.

EXAMPLE

Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$
The Transpose of Matrix

DEFINITION

If A is $m \times n$ matrix, then the **transpose** of A, denoted by A^T is a matrix whose columns are formed from the corresponding rows of A.

THEOREM

Let A and B denote matrices whose size are appropriate for the following operations.

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$
3. for any scalar r, $(rA)^T = r(A^T)$