Matrix operations
The Matrix of a Linear Transformation

Let us consider columns $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
The Matrix of a Linear Transformation

Let us consider columns $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Suppose $T(e_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \\ 1 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, and $T(e_3) = \begin{bmatrix} -3 \\ 8 \\ 0 \\ 7 \end{bmatrix}$.

Find a formula for image of $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$.
The Matrix of a Linear Transformation

Let us consider columns \(e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \), and \(e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \).

Suppose \(T(e_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}, T(e_2) = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \) and \(T(e_3) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix} \).

Find a formula for image of \(x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 \).

Note that
\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = x_1 e_1 + x_2 e_2 + x_3 e_3.
\]
The Matrix of a Linear Transformation

Suppose $T(e_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \\ 1 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} 5 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, and $T(e_3) = \begin{bmatrix} -3 \\ 8 \\ 0 \\ 7 \end{bmatrix}$.

Note that

$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = x_1 e_1 + x_2 e_2 + x_3 e_3.$

Since T is linear

$T(x) = x_1 T(e_1) + x_2 T(e_2) + x_3 T(e_3) = \begin{bmatrix} 5 \\ -7 \\ 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 5 \\ 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -3 \\ 8 \\ 0 \\ 7 \end{bmatrix} = \begin{bmatrix} 5 & 5 & -3 \\ -7 & 2 & 8 \\ 2 & 1 & 0 \\ 1 & 0 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$
Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there is a unique matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^n$
Existence and Uniqueness Questions

DEFINITION

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each $b \in \mathbb{R}^m$ is the image of at least one $x \in \mathbb{R}^n$.
Existence and Uniqueness Questions

DEFINITION

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each $b \in \mathbb{R}^m$ is the image of at least one $x \in \mathbb{R}^n$.

DEFINITION

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each $b \in \mathbb{R}^m$ is an image of *at most* one $x \in \mathbb{R}^n$.
Uniqueness Question

THEOREM

Let \(T : \mathbb{R}^n \to \mathbb{R}^m \) be a linear transformation. Then \(T \) is one-to-one iff the equation \(T(x) = 0 \) has only one solution.
THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(x) = 0$ has only one solution.

PROOF.

Since T is linear, $T(0) = 0$ and we know that $T(x) = 0$ has at most one solution and hence only the trivial solution.
Uniqueness Question

THEOREM

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(x) = 0$ has only one solution.

PROOF.

Since T is linear, $T(0) = 0$ and we know that $T(x) = 0$ has at most one solution and hence only the trivial solution.

If T is not one-to-one, then there are a $b \in \mathbb{R}^m$ and $u \neq v \in \mathbb{R}^n$ such that $T(u) = T(v) = b$.
Uniqueness Question

THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one iff the equation $T(x) = 0$ has only one solution.

PROOF.

Since T is linear, $T(0) = 0$ and we know that $T(x) = 0$ has at most one solution and hence only the trivial solution.

If T is not one-to-one, then there are a $b \in \mathbb{R}^m$ and $u \neq v \in \mathbb{R}^n$ such that $T(u) = T(v) = b$.

But since T is linear $T(u - v) = T(u) - T(v) = 0$. But $u - v \neq 0$ hence $T(x) = 0$ has more than one solution, contradiction.
Existence Question

THEOREM

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

1. T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A spans \mathbb{R}^m;
2. T is one-to-one iff the columns of A are linearly independent.
Existence Question

THEOREM

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

1. T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A spans \mathbb{R}^m;
2. T is one-to-one iff the columns of A are linearly independent.

PROOF.

We prove earlier that columns of A span \mathbb{R}^m iff for each $b \in \mathbb{R}^m$ the equation $Ax = b$ is consistent i.e. $T(x) = b$ has solution. This is true iff T is \mathbb{R}^n onto \mathbb{R}^m. □
THEOREM

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

1. T maps \mathbb{R}^n onto \mathbb{R}^m iff the columns of A span \mathbb{R}^m;
2. T is one-to-one iff the columns of A are linearly independent.

PROOF.

$T(x)$ is one-to-one iff $Ax = 0$ has only trivial solution. This is true only if columns of A are linearly independent.
Special Matrices

- The scalar entry in the \(i \)th row and \(j \)th column of \(A \) is denoted \(a_{ij} \) and is called the \((i,j)\)-entry if \(A \).
Special Matrices

- The scalar entry in the ith row and jth column of A is denoted $a_{i,j}$ and is called the (i,j)-entry if A.
- **diagonal entries** in a $m \times n$ matrix $A = [a_{i,j}]$ are $a_{1,1}$, $a_{2,2}$, ... and they form the **main diagonal** of A.

Special Matrices

- The scalar entry in the ith row and jth column of A is denoted $a_{i,j}$ and is called the (i,j)-entry if A.
- **diagonal entries** in a $m \times n$ matrix $A = [a_{i,j}]$ are $a_{1,1}$, $a_{2,2}$, ... and they form the **main diagonal** of A.
- A **diagonal matrix** is a square $n \times n$ matrix whose nondiagonal entries are zero.
Special Matrices

- The scalar entry in the ith row and jth column of A is denoted $a_{i,j}$ and is called the (i,j)-entry if A.
- **diagonal entries** in a $m \times n$ matrix $A = [a_{i,j}]$ are $a_{1,1}$, $a_{2,2}$, ... and they form the **main diagonal** of A.
- A **diagonal matrix** is a square $n \times n$ matrix whose nondiagonal entries are zero. Note that identity matrix is diagonal matrix.
Special Matrices

- The scalar entry in the ith row and jth column of A is denoted $a_{i,j}$ and is called the (i,j)-entry if A.
- **diagonal entries** in a $m \times n$ matrix $A = [a_{i,j}]$ are $a_{1,1}$, $a_{2,2}$, ... and they form the **main diagonal** of A.
- A **diagonal matrix** is a square $n \times n$ matrix whose nondiagonal entries are zero. Note that identity matrix is diagonal matrix.
- A **zero matrix** is $m \times n$ matrix with all entries are equal to zero.
Sums

DEFINITION

If A and B are $m \times n$ matrices, then the **sum** $A + B$ is the $m \times n$ matrix whose columns are the sum of the corresponding columns of A and B.

EXAMPLE

Let $A = \begin{bmatrix} 4 & 0 & 5 \\ 1 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$.
Sums

DEFINITION

If A and B are $m \times n$ matrices, then the sum $A + B$ is the $m \times n$ matrix whose columns are the sum of the corresponding columns of A and B.

EXAMPLE

Let $A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $A + B = \begin{bmatrix} 5 & 1 & 5 \\ 2 & 8 & 9 \end{bmatrix}$.
Scalar Multiples

DEFINITION

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

EXAMPLE

Let $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $2B = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$.
Scalar Multiples

DEFINITION

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

EXAMPLE

Let $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}.$
Scalar Multiples

DEFINITION

If r is a scalar and A is a matrix, then the scalar multiple rA is the matrix whose columns are r times the corresponding columns in A.

EXAMPLE

Let $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$. Then $2B = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$.
Matrix Multiplication
Matrix Multiplication

\[A \cdot (B \cdot x) \]
Matrix Multiplication

\[x \rightarrow Bx \rightarrow A(Bx) \]
Matrix Multiplication

\[x \rightarrow Bx \rightarrow A(Bx) \]
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$.

DEFINITION
If A is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = \begin{bmatrix} Ab_1; \ldots; Ab_p \end{bmatrix}$ is a matrix of size $m \times p$.

MATRICES OPERATIONS | Alexander Knop
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, ..., b_p columns of B and x_1, ..., x_p entries of x.
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, \ldots, b_p columns of B and x_1, \ldots, x_p entries of x. Note that $Bx = x_1b_1 + \ldots x_pb_p$.
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, \ldots, b_p columns of B and x_1, \ldots, x_p entries of x. Note that $Bx = x_1 b_1 + \ldots + x_p b_p$. By linearity of multiplication $A(Bx) = x_1 Ab_1 + \cdots + x_p Ab_p$.
Matrix Multiplication

Let A be a $m \times n$ matrix, B be a $n \times p$ matrix, and $x \in \mathbb{R}^p$. Denote as b_1, \ldots, b_p columns of B and x_1, \ldots, x_p entries of x. Note that $Bx = x_1 b_1 + \ldots x_p b_p$.

By linearity of multiplication $A(Bx) = x_1 Ab_1 + \cdots + x_p Ab_p$.

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.
Matrix Multiplication

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.

EXAMPLE

Let us compute AB where

\[
A = \begin{bmatrix}
2 & 3 \\
1 & 5
\end{bmatrix}
\]

and

\[
B = \begin{bmatrix}
4 & 3 & 6 \\
1 & 2 & 3
\end{bmatrix}
\]

Then,

\[
Ab_1 = \begin{bmatrix}
2 & 3 & 1 \\
5 & &
\end{bmatrix}
\begin{bmatrix}
4 \\
1
\end{bmatrix} = \begin{bmatrix}
11 \\
1
\end{bmatrix}
\]

\[
Ab_2 = \begin{bmatrix}
2 & 3 & 1 \\
5 & &
\end{bmatrix}
\begin{bmatrix}
3 \\
2
\end{bmatrix} = \begin{bmatrix}
10 \\
13
\end{bmatrix}
\]

\[
Ab_3 = \begin{bmatrix}
2 & 3 & 1 \\
5 & &
\end{bmatrix}
\begin{bmatrix}
6 \\
3
\end{bmatrix} = \begin{bmatrix}
21 \\
9
\end{bmatrix}
\]
Matrix Multiplication

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.

EXAMPLE

Let us compute AB where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.
Matrix Multiplication

DEFINITION

If is a $m \times n$ matrix, B be a $n \times p$ matrix, and b_1, \ldots, b_p are columns of B, then the matrix $AB = [Ab_1, \ldots, Ab_p]$ is a matrix of size $m \times p$.

EXAMPLE

Let us compute AB where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.

$Ab_1 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ -1 \end{bmatrix}$, $Ab_2 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 10 \\ 13 \end{bmatrix}$,

$Ab_3 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$.
THEOREM

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.
Row-Column Rule

THEOREM

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.

In other words if $(AB)_{i,j}$ denotes (i,j)-entry of AB and A is $m \times n$ matrix, then

$$a_{i,1}b_{1,j} + \cdots + a_{i,n}b_{n,j}$$
THEOREM

If the product AB is defined, then the entry in row i and column j of AB is the sum of the products of corresponding entries from row i of A and column j of B.

In other words if $(AB)_{i,j}$ denotes (i,j)-entry of AB and A is $m \times n$ matrix, then

$$a_{i,1}b_{1,j} + \cdots + a_{i,n}b_{n,j}$$

THEOREM

1. $A(BC) = (AB)C$
2. $A(B + C) = AB + BC$
3. $(B + C)A = BA + CA$
4. $r(AB) = (rA)B = A(rB)$
5. $I_mA = A = AI_n$
Powers of Matrix

DEFINITION

If A is $n \times n$ matrix, then A^k denotes the product of k copies of A.
The Transpose of Matrix

DEFINITION

If A is $m \times n$ matrix, then the transpose of A, denoted by A^T is a matrix whose columns are formed from the corresponding rows of A.
The Transpose of Matrix

DEFINITION

If \(A \) is \(m \times n \) matrix, then the **transpose** of \(A \), denoted by \(A^T \) is a matrix whose columns are formed from the corresponding rows of \(A \).

EXAMPLE

Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). Then \(A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \).
The Transpose of Matrix

DEFINITION

If A is $m \times n$ matrix, then the **transpose** of A, denoted by A^T is a matrix whose columns are formed from the corresponding rows of A.

THEOREM

Let A and B denote matrices whose size are appropriate for the following operations.

1. $(A^T)^T = A$
2. $(A + B)^T = A^T + B^T$
3. For any scalar r, $(rA)^T = r(A^T)$