Determinants and Volume

Authors: Alexander Knop

Institute: UC San Diego
THEOREM

If A is a square matrix, then $\det A = \det A^T$.
THEOREM

If A is a square matrix, then $\det A = \det A^T$.

PROOF.

We prove this theorem using induction by size of A.
THEOREM

If A is a square matrix, then $\det A = \det A^T$.

PROOF.

We prove this theorem using induction by size of A. Let A be an $n \times n$ matrix.
THEOREM

If A is a square matrix, then $\det A = \det A^T$.

PROOF.

We prove this theorem using induction by size of A. Let A be an $n \times n$ matrix. For $n = 1$ the statement is obvious.
THEOREM

If A is a square matrix, then $\det A = \det A^T$.

PROOF.

We prove this theorem using induction by size of A. Let A be an $n \times n$ matrix. For $n = 1$ the statement is obvious. Let us assume that we prove the statement for all smaller matrices and $n = k + 1$.
Columns Operations

THEOREM

If A is a square matrix, then det A = det A^T.

PROOF.

We prove this theorem using induction by size of A. Let A be an n × n matrix. For n = 1 the statement is obvious. Let us assume that we prove the statement for all smaller matrices and n = k + 1. Then cofactor of a_{1,j} in A is equal to cofactor of a_{j,1} in A^T.
Columns Operations

THEOREM

If A is a square matrix, then $\det A = \det A^T$.

PROOF.

We prove this theorem using induction by size of A. Let A be an $n \times n$ matrix. For $n = 1$ the statement is obvious. Let us assume that we prove the statement for all smaller matrices and $n = k + 1$. Then cofactor of $a_{1,j}$ in A is equal to cofactor of $a_{j,1}$ in A^T. Hence the cofactor expansion of the first row of A is equal to the cofactor expansion of the first column of A^T. \qed
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

EXAMPLE

Let $A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$.
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

EXAMPLE

Let $A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$. Then $AB = \begin{bmatrix} 25 & 20 \\ 14 & 13 \end{bmatrix}$.
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

EXAMPLE

Let $A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$. Then $AB = \begin{bmatrix} 25 & 20 \\ 14 & 13 \end{bmatrix}$.

$\det AB = 25 \cdot 13 - 20 \cdot 14 = 45$
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

EXAMPLE

Let $A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$. Then $AB = \begin{bmatrix} 25 & 20 \\ 14 & 13 \end{bmatrix}$.

$\det AB = 25 \cdot 13 - 20 \cdot 14 = 45$ and $(\det A) \cdot (\det B) = 9 \cdot 5 = 45$.
The Multiplicative Property

THEOREM

Let A be a square matrix.

- If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
The Multiplicative Property

THEOREM

Let A be a square matrix.

- If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.

- If two rows of A interchanged to produce B, then $\det B = -\det A$.
The Multiplicative Property

THEOREM

Let A be a square matrix.

- If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.

- If two rows of A interchanged to produce B, then $\det B = -\det A$.

- If one row of A is multiplied by k to produce B, then $\det B = k \det A$.

The Multiplicative Property

THEOREM

If A is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then

$$\det EA = (\det E)(\det A)$$

where

$$\det E = \begin{cases}
1 & \text{if } E \text{ is a row replacement} \\
-1 & \text{if } E \text{ is an interchange} \\
r & \text{if } E \text{ is a scale by } r
\end{cases}$$
The Multiplicative Property

PROOF.

We prove this theorem using induction by n.
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$.
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$. Let us prove the induction step.
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$. Let us prove the induction step. Let the statement holds for all matrices of size $k \times k$ where $k = n - 1$.
The Multiplicative Property

PROOF.

We prove this theorem using induction by \(n \). It is easy to check this statement for \(n = 2 \).

Let us prove the induction step. Let the statement holds for all matrices of size \(k \times k \) where \(k = n - 1 \).

Let \(i \) be a row that was not changed by the row operation \(E \).
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$.
Let us prove the induction step. Let the statement holds for all matrices of size $k \times k$ where $k = n - 1$.
Let i be a row that was not changed by the row operation E. Let $A_{i,j}$ ($B_{i,j}$ respectively) be the matrix obtained by deleting ith row and jth column from A (EA respectively).
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$.
Let us prove the induction step. Let the statement holds for all matrices of size $k \times k$ where $k = n - 1$.
Let i be a row that was not changed by the row operation E. Let $A_{i,j}$ ($B_{i,j}$ respectively) be the matrix obtained by deleting ith row and jth column from A (EA respectively).
Note that rows of $B_{i,j}$ are obtained from $A_{i,j}$ by the same type of row operation that E performs on A.
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$. Let us prove the induction step. Let the statement holds for all matrices of size $k \times k$ where $k = n - 1$. Let i be a row that was not changed by the row operation E. Let $A_{i,j}$ ($B_{i,j}$ respectively) be the matrix obtained by deleting ith row and jth column from A (EA respectively). Note that rows of $B_{i,j}$ are obtained from $A_{i,j}$ by the same type of row operation that E performs on A. Hence $\det B_{i,j} = \alpha \det A_{i,j}$ where $\alpha = \det E$.

Alexander Knop 6
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$.
Let us prove the induction step. Let the statement holds for all matrices of size $k \times k$ where $k = n - 1$.
Let i be a row that was not changed by the row operation E. Let $A_{i,j}$ ($B_{i,j}$ respectively) be the matrix obtained by deleting ith row and jth column from A (EA respectively).
Note that rows of $B_{i,j}$ are obtained from $A_{i,j}$ by the same type of row operation that E performs on A. Hence $\det B_{i,j} = \alpha \det A_{i,j}$ where $\alpha = \det E$.
Using cofactor expansion
$\det EA = a_{i,1} \det B_{i,1} - a_{i,2} \det B_{i,2} + \cdots + (-1)^n a_{i,n} \det B_{i,n}$
The Multiplicative Property

PROOF.

We prove this theorem using induction by \(n \). It is easy to check this statement for \(n = 2 \).
Let us prove the induction step. Let the statement holds for all matrices of size \(k \times k \) where \(k = n - 1 \).
Let \(i \) be a row that was not changed by the row operation \(E \). Let \(A_{i,j} \) (\(B_{i,j} \) respectively) be the matrix obtained by deleting \(i \)th row and \(j \)th column from \(A \) (\(EA \) respectively).
Note that rows of \(B_{i,j} \) are obtained from \(A_{i,j} \) by the same type of row operation that \(E \) performs on \(A \). Hence \(\det B_{i,j} = \alpha \det A_{i,j} \) where \(\alpha = \det E \).
Using cofactor expansion
\[
\det EA = a_{i,1} \det B_{i,1} - a_{i,2} \det B_{i,2} + \cdots + (-1)^n a_{i,n} \det B_{i,n} = \
\alpha a_{i,1} \det A_{i,1} - \alpha a_{i,2} \det A_{i,2} + \cdots + (-1)^n \alpha a_{i,n} \det A_{i,n}
\]
The Multiplicative Property

PROOF.

We prove this theorem using induction by n. It is easy to check this statement for $n = 2$.

Let us prove the induction step. Let the statement holds for all matrices of size $k \times k$ where $k = n - 1$.

Let i be a row that was not changed by the row operation E. Let $A_{i,j}$ ($B_{i,j}$ respectively) be the matrix obtained by deleting ith row and jth column from A (EA respectively).

Note that rows of $B_{i,j}$ are obtained from $A_{i,j}$ by the same type of row operation that E performs on A. Hence $\det B_{i,j} = \alpha \det A_{i,j}$ where $\alpha = \det E$.

Using cofactor expansion

$$
\det EA = a_{i,1} \det B_{i,1} - a_{i,2} \det B_{i,2} + \cdots + (-1)^n a_{i,n} \det B_{i,n} = \\
\alpha a_{i,1} \det A_{i,1} - \alpha a_{i,2} \det A_{i,2} + \cdots + (-1)^n \alpha a_{i,n} \det A_{i,n} = \alpha \det A.
$$
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too.
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too. If A is not invertible, then $\det A = 0$ and $\det AB = 0$.

Alexander Knop
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too. If A is not invertible, then $\det A = 0$ and $\det AB = 0$. Otherwise, there is a sequence E_1, \ldots, E_l of elementary row operations such that $A = E_1 \ldots E_l$.
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too. If A is not invertible, then $\det A = 0$ and $\det AB = 0$.

Otherwise, there is a sequence E_1, \ldots, E_l of elementary row operations such that $A = E_1 \ldots E_l$.

Hence $\det AB$
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too. If A is not invertible, then $\det A = 0$ and $\det AB = 0$. Otherwise, there is a sequence E_1, \ldots, E_l of elementary row operations such that $A = E_1 \ldots E_l$. Hence $\det AB = \det E_1 \ldots E_l B$.
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too. If A is not invertible, then $\det A = 0$ and $\det AB = 0$. Otherwise, there is a sequence E_1, \ldots, E_l of elementary row operations such that $A = E_1 \ldots E_l$. Hence $\det AB = \det E_1 \ldots E_l B = \det E_1 \det E_2 \ldots E_l B$.
The Multiplicative Property

THEOREM

Let A and B be $n \times n$ matrices. Then $\det AB = \det A \det B$.

PROOF.

Note that if A is not invertible, then AB is not invertible too. If A is not invertible, then $\det A = 0$ and $\det AB = 0$. Otherwise, there is a sequence E_1, \ldots, E_l of elementary row operations such that $A = E_1 \cdots E_l$. Hence $\det AB = \det E_1 \cdots E_l B = \det E_1 \det E_2 \cdots E_l B = \det E_1 \cdots E_l \det B = \det A \det B$. \qed
Cramer’s Rule

For any $n \times n$ matrix A and $b \in \mathbb{R}^n$, let $A_i(b)$ be a matrix obtained form A by replacing column i of A by b.
Cramer’s Rule

For any $n \times n$ matrix A and $b \in \mathbb{R}^n$, let $A_i(b)$ be a matrix obtained from A by replacing column i of A by b.

THEOREM

Let A be an invertible $n \times n$ matrix. For any $b \in \mathbb{R}^n$, the unique solution x of $Ax = b$ has entries defined by $x_i = \frac{\det A_i(b)}{\det A}$.
EXAMPLE

Let us solve the system

\[3sx - 2y = 4\]
\[-6x + sy = 1\]
EXAMPLE

Let us solve the system

\[\begin{align*}
3sx - 2y &= 4 \\
-6x + sy &= 1
\end{align*} \]

View the system as \(Ax = b \)
EXAMPLE

Let us solve the system

\[\begin{align*}
3sx - 2y &= 4 \\
-6x + sy &= 1
\end{align*}\]

View the system as \(Ax = b\) where \(A = \begin{bmatrix} 3s & -2 \\ -6 & s \end{bmatrix}\)
EXAMPLE

Let us solve the system

\[\begin{align*}
3sx - 2y &= 4 \\
-6x + sy &= 1
\end{align*} \]

View the system as \(Ax = b \) where

\[
A = \begin{bmatrix}
3s & -2 \\
-6 & s
\end{bmatrix}
\]

and

\[
A_1(b) = \begin{bmatrix}
4 & -2 \\
1 & s
\end{bmatrix}, \quad A_2(b) = \begin{bmatrix}
3s & 4 \\
-6 & 1
\end{bmatrix}.
\]
EXAMPLE

Let us solve the system

\[3sx - 2y = 4\]
\[-6x + sy = 1\]

View the system as \(Ax = b\) where \(A = \begin{bmatrix} 3s & -2 \\ -6 & s \end{bmatrix}\) and

\[A_1(b) = \begin{bmatrix} 4 & -2 \\ 1 & s \end{bmatrix}, \quad A_2(b) = \begin{bmatrix} 3s & 4 \\ -6 & 1 \end{bmatrix}.\]

Since \(\det A = 3s^2 - 12 = 3(s + 2)(s - 2)\) the system has unique solution when \(s \neq \pm 2\).
EXAMPLE

Let us solve the system

\[\begin{align*}
3sx - 2y &= 4 \\
-6x + sy &= 1
\end{align*} \]

View the system as \(Ax = b \) where \(A = \begin{bmatrix} 3s & -2 \\ -6 & s \end{bmatrix} \) and

\[A_1(b) = \begin{bmatrix} 4 & -2 \\ 1 & s \end{bmatrix}, \quad A_2(b) = \begin{bmatrix} 3s & 4 \\ -6 & 1 \end{bmatrix}. \]

Since \(\det A = 3s^2 - 12 = 3(s + 2)(s - 2) \) the system has unique solution when \(s \neq \pm 2 \).

For such \(s \) the solution is

\[\begin{align*}
x_1 &= \frac{\det A_1(b)}{\det A} = \frac{4s + 2}{3(s + 2)(s - 2)}, \\
x_2 &= \frac{\det A_2(b)}{\det A} = \frac{3s + 24}{3(s + 2)(s - 2)} = \frac{s + 8}{(s + 2)(s - 2)}.
\]