1. We call a partition \(\{P_1, \ldots, P_k\} \) of \([n] \) nice iff \((j + 1) \notin P_i \) for every \(i \in [k] \) and \(j \in P_i \).
Prove that number of nice partitions is equal to \(B(n - 1) \).

Solution: Define \(S_n = \) the set of all partitions of \([n] \) and \(M_n = \) the set of all nice partitions of \([n] \).
We are going to construct a bijection
\[
f : S_{n-1} \rightarrow M_n.
\]
Notice that we can obtain every nice partition of \([n] \) by:

1. First adding a singleton block \(\{n\} \) to any partition of \([n] \).
2. Then, in each block of that partition of \([n - 1] \), we locate consecutive integers \(i, i + 1, \ldots, i + j \)
 and if \(j \) is odd place every other integer, i.e \(i, i + 2, i + 4, \ldots, i + j - 1 \), into the block with \(n \),
 if \(j \) is even we put \(i + 1, \ldots, i + j - 1 \) into the block with \(n \). We do this for each consecutive
 sequence of each block of each partition of \([n - 1] \) to obtain all possible nice partitions of \([n] \).

Note that the resulting partition is nice, since \(i + j \leq n - 1 \), hence \(i + j - 1 < n - 1 \).
For each nice partition of \([n] \) obtained this way we can have an inverse transformation \(f^{-1} \) that
takes every nice partition of \([n] \) and gives the corresponding original partition of \([n - 1] \) by:

1. Taking every element except \(n \) in the block that contains \(n \) and placing each element \(i \), in
 order, into a block that contains \(i - 1 \).
2. We then remove the block of \(n \) from our partition resulting in a partition of \([n - 1] \).

It can be seen that applying \(f^{-1} \) to every partition of \(M_n \) gives us every partition of \(S_n \). Thus \(f \)
forms a bijection between \(M_n \) and \(S_{n-1} \).
2. How many different 6-digit numbers have sum of their digits at most 47?

Solution: Let F denote the number of 6-digit numbers whose sum is less than 48. Note that number G of 6-digit numbers with sum of digits at least 48 is equal to $9 \cdot 10^5 - F$.

Let us find G. Note that the maximal sum of digits of a 6-digit number is $6 \cdot 9 = 54$. Hence, in order to transform 999999 into another number with sum of digits at least 48 we need to substract $54 - 48 = 6$ from the digits of 999999; i.e. we need to put at most $54 - 48 = 6$ balls into 6 boxes (each digit corresponds to a box).

Hence, $G = \sum_{i=0}^{6} \binom{6+i-1}{i} = \sum_{i=0}^{6} \binom{5+i}{5} = \binom{12}{6} = 924$. Thus $F = 9 \cdot 10^5 - 924 = 899076.$
3. How many ways to put \(n \) indistinguishable balls into \(k \) different boxes if we have to put at least \(a_i \) balls into the box with number \(i \).

Solution: Let \(i \in [k] \) and \(a_i \) denote the minimum number of balls the \(i \)th box contains for all \(a_1, \ldots, a_k \). So we can place \(a_i \) balls into the \(i \)th box for all \(i \). Let \(j = a_1 + a_2 + \cdots + a_k \) then we have \(n - j \) balls left to place into \(k \) boxes. This is then a weak composition problem, thus the solution is \(\binom{n-j+k-1}{k-1} \).