1. Let G be a graph on n vertices such that every vertex has odd degree. Show that n is even.

Solution: Notice for any odd and even numbers the following identities hold: odd + odd = even and even + odd = odd.

Assume there are k edges in G where $k \in \mathbb{Z}$ and let v_i denotes the i^{th} vertex of G and d_i denotes degree of it where $i \in [n]$. Then the total degree of G (i.e. $\sum_{i=1}^{n} d_i$) is $2k$ since we count every edge twice. Since every vertex has odd degree $2k = \sum_{i=1}^{n} d_i = \text{odd} + \text{odd} + \cdots + \text{odd}$.

Notice if n is odd then there are an odd number of vertices and $\sum_{i=1}^{n} d(v_i) = \text{odd} \neq 2k$ as $2k$ is even. Thus n must be even.
2. Find a minimal $k(n)$ such that for every graph G on n vertices, if G has at least $k(n)$ edges, then G is connected.

Solution: Assume G is a simple graph. The total possible edges that G can have is $\binom{n}{2}$ as each edge represents a connection between two vertices and there are $\binom{n}{2}$ sets of two vertices.

Let us assume that G is not connected i.e. we may split G into two disjoint subgraphs G_1 and G_2 of G such that vertices of G_1 are not connected with vertices of G_2. Let n_1 and n_2 denote the number of vertices in G_1 and G_2 respectively. Note that G_i has at most $\binom{n_i}{2}$ edges for every $i \in [2]$. Hence, G has at most $\binom{n_1}{2} + \binom{n_2}{2}$ edges.

However, $f(n_1) = \binom{n_1}{2} + \binom{n-n_1}{2}$ reached the minimum for $1 \leq n_1 \leq n - 1$ for $n_1 = 1$. As a result, $k(n) \leq \binom{n-1}{2} + 1$.

Additionally, note that there is a not connected graph G with $\binom{n-1}{2}$ edges (it is a complete graph on $n - 1$ vertices and one additional vertex). Thus $k(n) = \binom{n-1}{2} + 1$.
3. Let G be a graph. Show that there are two different vertices u and v such that they have the same degree.

Solution: Assume G is a simple graph with n vertices. Suppose every vertex in G has different degrees. The set of degrees of the vertices is then $\{0, 1, \ldots, n-1\}$. However this means that one vertex is connected to all other vertices and another vertex is connected to no other vertices, it is a contradiction. Therefore there are at least two different vertices u and v such that they have the same degree.