Part I: from the textbook

Chapter I, Section 12: 1, 3

Part II

In what follows, a ring of rank n is a commutative ring with unit that is also a free \mathbb{Z}-module of rank n.

1. Prove that a finite integral domain is a field.

2. Prove that (up to isomorphism) the only ring of rank 1 is \mathbb{Z} itself.

3. Prove that an order in a number field of degree n is a ring of rank n.

4. Let S be ring of rank 2, also called a quadratic ring.
 (a) Prove that S admits a \mathbb{Z}-basis of the form 1, τ.
 (b) For any basis 1, τ of S, specifying the ring structure on S is equivalent to specifying $b, c \in \mathbb{Z}$ such that
 $$\tau^2 = b\tau + c.$$
 Prove that the quantity $D = b^2 + 4c$ does not depend on the choice of τ. The quantity D is called the discriminant of S and is denoted $\text{disc}(S)$.
 (c) Show that S admits a basis 1, τ such that
 $$\tau^2 = c \text{ or } \tau^2 = \tau + c$$
 with $c \in \mathbb{Z}$.
 (d) Conclude that the discriminant of S is congruent to either 0 or 1 modulo 4.

5. Prove that if K is a quadratic number field, the discriminant of K defined in lecture and the discriminant of \mathcal{O}_K as a quadratic ring are the same.
6. Prove that isomorphism classes of quadratic rings S are in canonical bijection with elements of the set

$$\mathcal{D} = \{D \in \mathbb{Z}; D \equiv 0,1 \pmod{4}\}$$

of discriminants. Under this bijection, a quadratic ring S corresponds to $\text{disc}(S) \in \mathcal{D}$, and an element $D \in \mathcal{D}$ corresponds to the quadratic ring

$$S(D) = \mathbb{Z} \left[\frac{D + \sqrt{D}}{2} \right].$$