MATH 103A - Practice Problems for the Final

Alina Bucur

2. Write down 5 different groups of order 24 , such that no two of them are isomorphic to each other. Prove that no two are isomorphic.

Solution. $Z_{8} \oplus Z_{3}, Z_{4} \oplus Z_{2} \oplus Z_{3}, Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{3}, D_{12}, S_{4}$.
The first three are abelian, the last two are not. The abelian groups are pairwise not isomorphic because the first one has elements of order 8 , the second has no element of order 8 , but it does have elements of order 4 , while the third does not have elements of either order 8 or 4 . For the last two groups, D_{12} has 13 elements of order 2 (12 flips and the rotation by 180°). On the other hand, the elements of order 2 in S_{4} are either permutations (6 of them) or product of disjoint permutations (3 elements), for a total of 9 elements. So $D_{12} \not \approx S_{4}$.
3. Fix some $n \geq 3$, and let $\alpha \in S_{n}$ be an odd permutation. Prove that there must exist an even permutation β such that $\alpha=(12) \beta$.

Solution. Just take $\beta=(12) \alpha$.
4. Let $\alpha=\left[\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 6 & 2 & 4 & 1 & 5\end{array}\right]$ be a permutation in S_{7}. Find α^{34}, expressing your answer in cycle notation.

Solution. $\alpha=(136)(2754)$, so $\alpha^{34}=(136)^{34}(2754)^{34}$. The order of (134) is 3, so $(136)^{34}=(134)$. The order of (2754) is 4, so $(2754)^{34}=(2754)^{2}=(25)(47)$.
Hence $\alpha^{34}=(136)(25)(47)$.
5. Suppose that N is a normal subgroup of the symmetric group S_{5}. Show that if (12) $\in N$ then $N=S_{5}$.

Solution. If (12) $\in N$, then $\sigma(12) \sigma^{-1}=(\sigma(1), \sigma(2)) \in N$ for all $\sigma \in S_{5}$. Since ($\left.\sigma(1), \sigma(2)\right)$ may be any two cycle, it follows that $(i, j) \in N$ for all $i \neq j$. As N is a group it must contain all the products of 2 - cycles. This implies $\sigma \in N$ for any $\sigma \in S_{5}$ since every permutation may be written as a product of 2 - cycles.
6. Prove that an abelian group with two elements of order 2 must have a subgroup of order 4 .

Solution. Let $a, b \in G$ with $a \neq b$ and $|a|=2=|b|$. Then $H:=\{e, a, b, a b\}$ is the desired subgroup. Notice that $a b \neq a$ or b by cancellation and $a b \neq e$ since otherwise, $a=b^{-1}=b$. Thus $|H|=4$.
7. Suppose that H and K are subgroups of a group G. If $|H|=15$ and $|K|=28$, find $|H \cap K|$.

Solution. Since $H \cap K$ is a subgroup of both H and K, it follows by Lagrange's theorem that $|H \cap K|$ must divide both $|H|=15$ and $|K|=28$. Since 15 and 28 are relatively prime, we again conclude that $|H \cap K|=1$.
8. Explain why the function, $\varphi: Z_{12} \rightarrow Z_{10}$ defined by $\varphi(x)=x \bmod 10$ is not a group homomorphism.

Solution. The point is that this is not a well-defined function. But since the problem asks about a homomorphism, we can make our life easier by using the operation-preserving property. If φ were a homomorphism, then $\varphi(0)=\varphi(12 \cdot 1)=12 \cdot \varphi(1)$. Yet,

$$
12 \cdot \varphi(1)=12 \bmod 10=2 \neq 0=\varphi(0)
$$

9. Describe all of the homomorphisms, φ, from $Z_{12} \rightarrow Z_{10}$.

Solution. To get a homomorphism, we must have $12 \cdot \varphi(1)=0$ in Z_{10}, that is $10 \mid 12 \cdot \varphi(1)$, i.e. $5 \mid \varphi(1)$. Therefore $\varphi(1)$ is either 0 or 5 and hence $\varphi(x)=0$ in the first case and $\varphi(x)=5 x \bmod 10$ in the second case.
10. Let N be a normal subgroup of a finite group G. Prove that the order of the group element $g N$ in G / N divides the order of g.

Solution. Indeed, $(g N)^{|g|}=g^{|g|} N=e N$, and thus we know that $|g N|$ divides $|g|$. Alternatively, let $\pi: G \rightarrow G / H$ be the homomorphism, $\pi(g)=g H$. Then we know that $|\pi(g)|$ divides $|g|$, which again states $|g N|$ divides $|g|$.
11. How many elements of order 6 are in $S_{3} \oplus S_{3}$? How many cyclic subgroups of order 6 does $S_{3} \oplus S_{3}$ have?

Solution. S_{3} has one element of order 1 (the unit), 3 elements of order 2 (permutations) and 2 elements of order 3 (the two 3 -cycles). Hence $|(\sigma, \tau)|=\operatorname{lcm}(|\sigma|,|\tau|)=6$ only when $|\sigma|=2,|\tau|=3$ or viceversa. Each situation gives $3 \cdot 2=6$ possibilities. So there are 12 elements of order 6 are in $S_{3} \oplus S_{3}$.
Each cyclic subgroup of order 6 contains $\phi(6)=2$ elements of order 6 , so there are $12 / 2=6$ cyclic subgroups of order 6 in $S_{3} \oplus S_{3}$.
12. Find 11^{-1} where 11 is thought of as an element of $U(19)$.

Solution. There are two possibilities.
First one: use the Euclidean algorithm to get $1=7 \cdot 11-4 \cdot 19$ and therefore taking this equation mod 19 shows $1=7 \cdot 11(\bmod 19)$. Therefore, $7=11^{-1}$. As a check we have,

$$
7 \cdot 11=77=4 \cdot 19+1
$$

Second one: consider $\langle 11\rangle=\left\{1,11,11^{2}(\bmod 19)=7,11^{3}=77(\bmod 19)=1\right\}$ from which we see that $11^{-1}=11^{2}=7$.
13. Find all left cosets of $H=\{1,11\}$ in $G=U(20)$. Find the isomorphism class of G / H.

Solution.

$$
U(20)=\{1,3,7,9,11,13,17,19\}
$$

The cosets are given by

$$
H=\{1,11\}, 3 H=\{3,13\}, 7 H=\{7,17\}, \text { and } 9 H=\{9,19\}
$$

Since these are four distinct cosets and $|U(20): H|=8 / 2=4$, we must have all of them. Alternatively observe that there union is all of $U(20)$ and they are distinct (disjoint) cosets.
This means that the G / H is an abelian group with 4 elements, hence it is isomorphic to either Z_{4} or $Z_{2} \oplus Z_{2}$. Now $(3 H)(3 H)=9 H$, so $3 H$ does not have order 2 . Thus $G / H \approx Z_{4}$.
14. Let G be a group of permutations of the set $S=\{1,2,3\}$ such that orb $_{G}(2)=\{1,2\}$. Determine G.

Solution. G is a subgroup of S_{3} and since $3 \notin \operatorname{orb}_{G}(2)$ we have that (123) and (23) are not elements of G. Since $(132)^{2}=(123)$ this implies $(132) \notin G$. So $G \subset\{\epsilon,(12),(13)\}$. Since $1 \in \operatorname{orb}_{G}(2)$, it follows that $(12) \in G$.
But if both (12) and (13) were elements of G, then their product would be an element of G. So we would have $(12)(13)=(132) \in G$. And we know that this is not the case. So (13) $\notin G$.
Hence $G=\{\epsilon,(12)\}$.
15. Up to isomorphism, how many abelian groups of order 210 are there? How about order 40?

Solution. If $|G|=210=2 \cdot 3 \cdot 5 \cdot 7$, then
$G \approx($ abelian group of order 2$) \oplus($ abelian group of order 3$) \oplus$
(abelian group of order 5$) \oplus($ abelian group of order 7$)$.
But abelian group of order $2 \approx Z_{2}$, etc. . So $G \approx Z_{2} \oplus Z_{3} \oplus Z_{5} \oplus Z_{7} \approx Z_{210}$. There is only one abelian group of order 210 up to isomorphism.
On the other hand, if $|G|=40=2^{3} \cdot 5$ then $G \approx($ abelian group of order 8$) \oplus($ abelian group of order 3$)$. There is only one possibility for the abelian group of order 3 , but there are 3 possibilities for an abelian group of order 8 , namely $Z_{8}, Z_{4} \oplus Z_{2}$ and $Z_{2} \oplus Z_{2} \oplus Z_{2}$. So, up to isomorphism, there are $3 \cdot 1=3$ abelian groups of order 40 .
16. Compute the centralizer of the flip around the horizontal line in D_{4}.

Solution. See Exam 1, yellow version.
17. What are the possible orders of the elements of $U(72)$?

Solution. $72=2^{3} \cdot 3^{2}$, so $U(72) \approx U(8) \oplus U(9) \approx Z_{2} \oplus Z_{2} \oplus Z_{6}$. In $Z_{2} \oplus Z_{2} \oplus Z_{6}$, the possible orders are

$\|a\|$	$\|b\|$	$\|c\|$	$\|(a, b, c)\|$
1	1	1	1
2	1	1	2
1	2	1	2
2	2	1	2
1	1	2	2
2	1	2	2
1	2	2	2
2	2	2	2
1	1	3	3
2	1	3	6
1	2	3	6
2	2	3	6
1	1	6	6
2	1	6	6
1	2	6	6
2	2	6	6

18. Find the isomorphism class of $U(72)$.

Solution. $72=2^{3} \cdot 3^{2}$, so $U(72) \approx U(8) \oplus U(9) \approx Z_{2} \oplus Z_{2} \oplus Z_{6}$.

