
MATH 103A – Practice Problems for the Final

Alina Bucur

2. Write down 5 different groups of order 24, such that no two of them are isomorphic to each other.
Prove that no two are isomorphic.

Solution. Z8 ⊕ Z3, Z4 ⊕ Z2 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3, D12, S4.

The first three are abelian, the last two are not. The abelian groups are pairwise not isomorphic
because the first one has elements of order 8, the second has no element of order 8, but it does have
elements of order 4, while the third does not have elements of either order 8 or 4. For the last two
groups, D12 has 13 elements of order 2 (12 flips and the rotation by 180◦). On the other hand, the
elements of order 2 in S4 are either permutations (6 of them) or product of disjoint permutations (3
elements), for a total of 9 elements. So D12 6≈ S4.

3. Fix some n ≥ 3, and let α ∈ Sn be an odd permutation. Prove that there must exist an even
permutation β such that α = (12)β.

Solution. Just take β = (12)α.

4. Let α =
[
1 2 3 4 5 6 7
3 7 6 2 4 1 5

]
be a permutation in S7.. Find α34, expressing your answer in cycle

notation.

Solution. α = (136)(2754), so α34 = (136)34(2754)34. The order of (134) is 3, so (136)34 = (134). The
order of (2754) is 4, so (2754)34 = (2754)2 = (25)(47).

Hence α34 = (136)(25)(47).

5. Suppose that N is a normal subgroup of the symmetric group S5. Show that if (12) ∈ N then N = S5.

Solution. If (12) ∈ N, then σ (12)σ−1 = (σ (1) , σ (2)) ∈ N for all σ ∈ S5. Since (σ (1) , σ (2)) may be
any two cycle, it follows that (i, j) ∈ N for all i 6= j. As N is a group it must contain all the products
of 2- cycles. This implies σ ∈ N for any σ ∈ S5 since every permutation may be written as a product
of 2- cycles.

6. Prove that an abelian group with two elements of order 2 must have a subgroup of order 4.

Solution. Let a, b ∈ G with a 6= b and |a| = 2 = |b| . Then H := {e, a, b, ab} is the desired subgroup.
Notice that ab 6= a or b by cancellation and ab 6= e since otherwise, a = b−1 = b. Thus |H| = 4.

7. Suppose that H and K are subgroups of a group G. If |H| = 15 and |K| = 28, find |H ∩K| .

Solution. Since H ∩K is a subgroup of both H and K, it follows by Lagrange’s theorem that |H ∩K|
must divide both |H| = 15 and |K| = 28. Since 15 and 28 are relatively prime, we again conclude that
|H ∩K| = 1.

8. Explain why the function, ϕ : Z12 → Z10 defined by ϕ (x) = xmod10 is not a group homomorphism.
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Solution. The point is that this is not a well-defined function. But since the problem asks about a
homomorphism, we can make our life easier by using the operation-preserving property. If ϕ were a
homomorphism, then ϕ (0) = ϕ (12 · 1) = 12 · ϕ (1) . Yet,

12 · ϕ (1) = 12 mod 10 = 2 6= 0 = ϕ (0) .

9. Describe all of the homomorphisms, ϕ, from Z12 → Z10.

Solution. To get a homomorphism, we must have 12 · ϕ (1) = 0 in Z10, that is 10|12 · ϕ (1) , i.e.
5|ϕ (1) . Therefore ϕ (1) is either 0 or 5 and hence ϕ (x) = 0 in the first case and ϕ (x) = 5xmod10 in
the second case.

10. Let N be a normal subgroup of a finite group G. Prove that the order of the group element gN in
G/N divides the order of g.

Solution. Indeed, (gN)|g| = g|g|N = eN, and thus we know that |gN | divides |g| . Alternatively, let
π : G → G/H be the homomorphism, π (g) = gH. Then we know that |π (g)| divides |g| , which again
states |gN | divides |g| .

11. How many elements of order 6 are in S3 ⊕ S3? How many cyclic subgroups of order 6 does S3 ⊕ S3

have?

Solution. S3 has one element of order 1 (the unit), 3 elements of order 2 (permutations) and 2 elements
of order 3 (the two 3-cycles). Hence |(σ, τ)| = lcm(|σ|, |τ |) = 6 only when |σ| = 2, |τ | = 3 or viceversa.
Each situation gives 3 · 2 = 6 possibilities. So there are 12 elements of order 6 are in S3 ⊕ S3.

Each cyclic subgroup of order 6 contains φ(6) = 2 elements of order 6, so there are 12/2 = 6 cyclic
subgroups of order 6 in S3 ⊕ S3.

12. Find 11−1 where 11 is thought of as an element of U (19) .

Solution. There are two possibilities.

First one: use the Euclidean algorithm to get 1 = 7 · 11− 4 · 19 and therefore taking this equation mod
19 shows 1 = 7 · 11 (mod 19). Therefore, 7 = 11−1. As a check we have,

7 · 11 = 77 = 4 · 19 + 1.

Second one: consider 〈11〉 =
{
1, 11, 112 (mod 19) = 7, 113 = 77 (mod 19) = 1

}
from which we see that

11−1 = 112 = 7.

13. Find all left cosets of H = {1, 11} in G = U(20). Find the isomorphism class of G/H.

Solution.
U (20) = {1, 3, 7, 9, 11, 13, 17, 19}

The cosets are given by

H = {1, 11} , 3H = {3, 13} , 7H = {7, 17} , and 9H = {9, 19} .

Since these are four distinct cosets and |U (20) : H| = 8/2 = 4, we must have all of them. Alternatively
observe that there union is all of U (20) and they are distinct (disjoint) cosets.

This means that the G/H is an abelian group with 4 elements, hence it is isomorphic to either Z4 or
Z2 ⊕ Z2. Now (3H)(3H) = 9H, so 3H does not have order 2. Thus G/H ≈ Z4.

14. Let G be a group of permutations of the set S = {1, 2, 3} such that orbG(2) = {1, 2}. Determine G.
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Solution. G is a subgroup of S3 and since 3 /∈ orbG(2) we have that (123) and (23) are not elements
of G. Since (132)2 = (123) this implies (132) /∈ G. So G ⊂ {ε, (12), (13)}. Since 1 ∈ orbG(2), it follows
that (12) ∈ G.

But if both (12) and (13) were elements of G, then their product would be an element of G. So we
would have (12)(13) = (132) ∈ G. And we know that this is not the case. So (13) /∈ G.

Hence G = {ε, (12)}.

15. Up to isomorphism, how many abelian groups of order 210 are there? How about order 40?

Solution. If |G| = 210 = 2 · 3 · 5 · 7, then

G ≈ (abelian group of order 2)⊕ (abelian group of order 3)⊕
(abelian group of order 5)⊕ (abelian group of order 7).

But abelian group of order 2 ≈ Z2, etc. . . So G ≈ Z2 ⊕Z3 ⊕Z5 ⊕Z7 ≈ Z210. There is only one abelian
group of order 210 up to isomorphism.

On the other hand, if |G| = 40 = 23·5 then G ≈ (abelian group of order 8)⊕ (abelian group of order 3).
There is only one possibility for the abelian group of order 3, but there are 3 possibilities for an abelian
group of order 8, namely Z8, Z4 ⊕ Z2 and Z2 ⊕ Z2 ⊕ Z2. So, up to isomorphism, there are 3 · 1 = 3
abelian groups of order 40.

16. Compute the centralizer of the flip around the horizontal line in D4.

Solution. See Exam 1, yellow version.

17. What are the possible orders of the elements of U(72)?

Solution. 72 = 23 · 32, so U(72) ≈ U(8)⊕ U(9) ≈ Z2 ⊕ Z2 ⊕ Z6. In Z2 ⊕ Z2 ⊕ Z6, the possible orders
are

|a| |b| |c| |(a, b, c)|

1 1 1 1
2 1 1 2
1 2 1 2
2 2 1 2
1 1 2 2
2 1 2 2
1 2 2 2
2 2 2 2
1 1 3 3
2 1 3 6
1 2 3 6
2 2 3 6
1 1 6 6
2 1 6 6
1 2 6 6
2 2 6 6

18. Find the isomorphism class of U(72).

Solution. 72 = 23 · 32, so U(72) ≈ U(8)⊕ U(9) ≈ Z2 ⊕ Z2 ⊕ Z6.
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