Definitions

Group: a set G endowed with an operation $*: G \times G \rightarrow G$ that has the following properties.

- well-defined: $a * b \in G$ for all $a, b \in G$;
- associativity: $a *(b * c)=(a * b) * c$
- unit: there exists an element $e \in G$ such that $a * e=e * a=a$ for all $a \in G$;
- inverses: for every $a \in G$ there exists an element $b \in G$ such that $a * b=b * a=e$ (denoted $\left.b=a^{-1}\right)$.
Abelian (commutative) group: a group $(G, *)$ with the property that $a * b=b * a$ for all $a, b \in G$.
Subgroup of a group $(G, *)$: a subset $H \subset G$ such that $(H, *)$ is a group (same operation as G).
Cyclic subgroup generated by an element $a:\langle a\rangle=\left\{a^{n} ; n \in \mathbb{Z}\right\}$. This is the smallest subgroup that contains a.

Cyclic group: A group that is generated by just one of its elements.
Order of a group: the number of elements in that group. Notation: $|G|$.
Order of an element: the number of elements in the subgroup generated by that element;

$$
|a|=|\langle a\rangle|= \begin{cases}\min \left\{n \geq 1 ; a^{n}=e\right\} & \text { if such a power exists; } \\ \infty & \text { otherwise (i.e. } \left.a^{n} \neq e \text { for all } n \geq 1\right)\end{cases}
$$

Centralizer of an element $a: C(a)=\{b \in G ; a * b=b * a\}$ (it is subgroup of G).
Center of a group $G: Z(G)=\{b \in G ; b * x=x * b$ for all $x \in G\}$ (it is a normal subgroup of G).
Cycle of length $k:\left(a_{1} \ldots a_{k}\right)$ is the permutation in S_{n} that takes $a_{1} \mapsto a_{2}, a_{2} \mapsto a_{3}, \ldots a_{k} \mapsto a_{1}$ and leaves all other numbers in $\{1, \ldots, n\}$ alone.

Transposition: a $2-$ cycle $(i j)$ in S_{n}.
Even permutation: a permutation that is the product of an even number of 2-cycles.
Odd permutation: a permutation that is the product of an odd number of 2 -cycles.
Group homomorphism: a map between two groups $f:\left(G_{1}, *\right) \rightarrow\left(G_{2}, \diamond\right)$ that is

- well-defined: $a_{1}=b_{1}$ in $G_{1} \Longrightarrow f\left(a_{1}\right)=f\left(b_{1}\right)$ in G_{2}.
- operation-preserving: $f\left(a_{1} * b_{1}\right)=f\left(a_{1}\right) \diamond f\left(b_{1}\right)$.

Isomorphism of groups: a bijective group isomorphism; i.e. a map between two groups $f:\left(G_{1}, *\right) \rightarrow$ $\left(G_{2}, \diamond\right)$ that is

- well-defined: $a_{1}=b_{1}$ in $G_{1} \Longrightarrow f\left(a_{1}\right)=f\left(b_{1}\right)$ in G_{2}.
- operation-preserving: $f\left(a_{1} * b_{1}\right)=f\left(a_{1}\right) \diamond f\left(b_{1}\right)$ for all $a_{1}, b_{1} \in G_{1}$.
- one-to-one (injective): $f\left(a_{1}\right)=f\left(b_{1}\right) \Longrightarrow a_{1}=b_{1}$.
- onto (surjective): for every $a_{2} \in G_{2}$ there exists an element $a_{1} \in G_{1}$ such that $f\left(a_{1}\right)=a_{2}$.

Isomorphic groups: two groups G_{1} and G_{2} are isomorphic if it exists an isomorphism $f: G_{1} \rightarrow G_{2}$. Notation: $G_{1} \cong G_{2}$ or $G_{1} \cong G_{2}$ or $G_{1} \approx G_{2}$ or $G_{1} \simeq G_{2}$.

THIS IS NOT COMPLETE. MAKE YOUR OWN CHEAT SHEET.

Automorphism of a group G : an isomorphism $f: G \rightarrow G$.
Inner automorphism of G induced by an element $a \in G: \phi_{a}: G \rightarrow G, \quad \phi_{a}(x)=a x a^{-1}$.
External direct product of the groups $G_{1}, G_{2}, \ldots, G_{n}$ is the group $G_{1} \oplus \ldots \oplus G_{n}=\left\{\left(g_{1}, \ldots, g_{n}\right) ; g_{1} \in\right.$ $\left.G_{1}, \ldots, g_{n} \in G_{n}\right\}$ with the operation performed componentwise.

Cosets: if H is a subgroup of G and a an element of G, the left coset of H containing a is $a H=\{a h ; h \in H\}$ and the right coset of H containing a is $H a=\{h a ; h \in H\}$. In this case, a is called the coset representative of $a H$ or Ha .

Index of a subgroup $H \subseteq G$ is the number of distinct left cosets of H. It is denoted by $|G: H|$. (it is also equal to the number of distinct right cosets of H).

Normal subgroup: a subgroup H of the group G for which the left and right cosets coincide, i.e. $a H=H a$ for all $a \in G\left(\Leftrightarrow a H a^{-1}=H\right.$ for all $\left.a \in G\right)$. Notation: $H \triangleleft G$.

Factor group: if $H \triangleleft G$, the factor (quotient) group of G by H is $G / H=\{a H ; a \in G\}$ the set of left cosets of H in G under the operation $(a H)(b H)=(a b) H$. We can also say G modulo (mod) H.

Internal direct product: A group G is the internal direct product of $H_{1}, H_{2}, \ldots, H_{m}$ if all the H_{i} 's are normal subgroups of $G, G=H_{1} H_{2} \ldots H_{m}$, abd $\left(H_{1} H_{2} \ldots H_{i}\right) \cap H_{i+1}=\{e\}$ for all $1 \leq i \leq m-1$. Notation: $G=H_{1} \times H_{2} \times \ldots \times H_{m}$.

Kernel of a group homomorphism $f: G_{1} \rightarrow G_{2}$ is ker $f=\left\{a_{1} \in G_{1} ; f\left(a_{1}\right)=e_{G_{2}}\right\}$ (subset of G_{1}).
Image of a group homomorphism $f: G_{1} \rightarrow G_{2}$ is $\operatorname{Im} f=\left\{f\left(a_{1}\right) ; a_{1} \in G_{1}\right\}$ (subset of G_{2}).
Isomorphism class: to determine the isomorphism class of a finite abelian group G means to find a group of the form $Z_{p_{1}^{n_{1}}} \oplus Z_{p_{2}^{n_{2}}} \oplus \ldots \oplus Z_{p_{k}^{n_{k}}}$ which is isomorphic to G. (Note: the primes p_{1}, \ldots, p_{k} do NOT have to be distinct.)

Greedy algorithm for an abelian group G of order p^{n}

1. Compute the orders of the elements of G.
2. Select an element a_{1} of maximum order in G; set $G_{1}=\left\langle a_{1}\right\rangle$ and $i=1$.
3. If $|G|=\left|G_{1}\right|$, STOP; if not, replace i by $i+1$.
4. Select an element a_{i} of maximum order p^{k} such that $p^{k} \leq \frac{|G|}{\left|G_{i-1}\right|}$ and none of the $a_{i}, a_{i}^{p}, \ldots, a_{i}^{p^{k-1}}$ is in G_{i-1}; set $G_{i}=G_{i-1} \times\left\langle a_{i}\right\rangle$.
5. Return to step 3.

Theorems

1. Subgroup tests for a nonempty subset H of a group $(G, *)$

One-step test: $a, b \in H \Longrightarrow a * b^{-1} \in H$
Two-step test: $a, b \in H \Longrightarrow a * b \in H$ and $a \in H \Longrightarrow a^{-1} \in H$
2. If $|a|<\infty$, then $\left|a^{k}\right|=\frac{|a|}{\operatorname{gcd}(k,|a|)}$.
3. If $|a|=\infty$ and $k \neq 0$, then $\left|a^{k}\right|=\infty$.
4. Every cyclic group is abelian. Therefore if a group is not abelian, it cannot possibly be cyclic.
5. However, even a nonabelian group has cyclic subgroups, and it can have other abelian subgroups. For instance, the center of G is an abelian subgroup of G.
6. An element a generates a finite group $G \Leftrightarrow|a|=|G|$.
7. The structure of a cyclic group $G=\langle a\rangle$ of order n

- every subgroup of G is cyclic
- the order of every subgroup divides $|G|$
- the order of every element of G divides the order of the group
- for every divisor d of n there exists a unique subgroup H of G with $|H|=d$; namely H is the cyclic subgroup generated by $a^{n / d}$
- for every divisor d of n (including n), there are exactly $\varphi(d)$ elements of order d
- if $k \nmid n$, there are no elements in G of order k

8. Permutations.

- Disjoint cycles commute.
- The order of a cycle is equal to its length.
- Every permutation can be written uniquely as a product of disjoint cycles. Its order is the lowest common multiple of the lengths of those cycles.
- Every permutation can be written as a product of transpositions.
- Each permutations is either even or odd.
- A cycle of odd length is even.
- A cycle of even length is odd.
- $($ even $) \cdot($ even $)=$ even, $($ odd $) \cdot($ odd $)=$ even, $($ even $) \cdot($ odd $)=o d d$.

9. Properties of an isomorphism $f: G_{1} \rightarrow G_{2}$

- f^{-1} is an isomorphism.
- $f\left(e_{G_{1}}\right)=e_{G_{2}}$.
- $f\left(a^{-1}\right)=f(a)^{-1}$ for all $a \in G_{1}$.
- $f\left(a^{n}\right)=f(a)^{n}$ for all $a \in G_{1}$ and all $n \in \mathbb{Z}$.
- $a b=b a \Leftrightarrow f(a) f(b)=f(b) f(a)$.
- G_{1} is abelian if and only if G_{2} is abelian.
- $G_{1}=\langle a\rangle \Leftrightarrow G_{2}=\langle f(a)\rangle$. So G_{1} is cyclic if and only if G_{2} is cyclic.
- $|f(a)|=|a|$.
- $\left|G_{1}\right|=\left|G_{2}\right|$.
- If G_{1} is finite, then G_{1} and G_{2} have exactly the same number of elements of each order.
- The equation $x^{k}=b$ has the same number of solutions in G_{1} as does the equation $y^{k}=f(b)$ in G_{2}.
- If H_{1} is a subgroup of G_{1}, then $f\left(H_{1}\right)$ is a subgroup of G_{2}.

10. For every element $a \in G$, the map $\phi_{a}: G \rightarrow G, \phi_{a}(x)=a x a^{-1}$ is an isomorphism.
11. G is abelian if and only if $\operatorname{Inn} G=\left\{\operatorname{Id}_{G}\right\}$.
12. $\operatorname{Aut}\left(Z_{n}\right) \approx U(n)$.
13. Properties of external direct products.

- $G_{1} \oplus \ldots \oplus G_{n}$ is abelian if and only if each G_{i} is abelian.
- $\left|\left(g_{1}, \ldots, g_{n}\right)\right|=\operatorname{lcm}\left(\left|g_{1}\right|, \ldots,\left|g_{n}\right|\right)$ in $G_{1} \oplus \ldots \oplus G_{n}$.
- If G_{1}, \ldots, G_{n} are finite cyclic groups, then $G_{1} \oplus \ldots \oplus G_{n}$ is cyclic if and only if $\operatorname{gcd}\left(\left|G_{i}\right|,\left|G_{j}\right|\right)=1$ for all $i \neq j$.
- $Z_{n_{1} n_{2} \ldots n_{k}} \approx Z_{n_{1}} \oplus \ldots \oplus Z_{n_{k}}$ if and only if $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ when $i \neq j$.
- If $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ when $i \neq j$, then $U\left(n_{1} \ldots n_{k}\right)=U\left(n_{1}\right) \oplus \ldots \oplus U\left(n_{k}\right)$.
- $U\left(p^{n}\right) \approx Z_{p^{n}-p^{n-1}}$ for a prime $p>2$.

14. Properties of cosets (H is a subgroup of $G, a, b \in G$)

- $a \in a H$
- $b \in a H \Longrightarrow b H=a H$
- $a, b \in G \Longrightarrow$ either $a H=b H$ or $a H \cap b H=\emptyset$
- $a H=b H \Leftrightarrow a^{-1} b \in H \Leftrightarrow b^{-1} a \in H$
- $H a=H b \Leftrightarrow a b^{-1} \in H \Leftrightarrow b a^{-1} \in H$
- $a H$ is a subgroup $\Leftrightarrow a H=H \Leftrightarrow a \in H$
- $|a H|=|H a|=|H|$
- $a H=H a \Leftrightarrow a H a^{-1}=H$

15. Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then $|H|$ divides $|G|$ and $|G: H|=\frac{|G|}{|H|}$.
16. Consequences of Lagrange's Theorem.

- The order of every element a of a group G divides the order of G.
- For all $a \in G, a^{|G|}=e$.
- If G is a group of order p and p is a prime, then G is cyclic (and therefore isomorphic to Z_{p}).

17. Normal subgroup test for a subgroup H of $G: a h a^{-1} \in H$ for all $h \in H$ and $a \in G$.
18. G / H is a group under left coset multiplication $(a H)(b H)=(a b) H$. The unit is the coset $e H=H$ and inverses are given by $(a H)^{-1}=\left(a^{-1}\right) H$.
19. Cauchy's Theorem for abelian groups

If G is a finite abelian group of order n and p is a prime that divides n, then G contains an element of order p.
20. If a group G is internal direct product $G=H_{1} \times H_{2} \times \ldots \times H_{m}$ of a finite number of (normal) subgroups, then G is isomorphic to the external direct product $H_{1} \oplus H_{2} \oplus \ldots \oplus H_{m}$ of those subgroups.
21. Properties of homomorphisms: let $f: G_{1} \rightarrow G_{2}$ be a group homomorphism. Then

- $f\left(e_{G_{1}}\right)=e_{G_{2}}$.
- $f\left(a^{-1}\right)=f(a)^{-1}$ for all $a \in G_{1}$.
- $f\left(a^{n}\right)=f(a)^{n}$ for all $a \in G_{1}$ and all $n \in \mathbb{Z}$.
- $a b=b a \Longrightarrow f(a) f(b)=f(b) f(a)$.
- If $|a|$ is finite, then $|f(a)|$ divides $|a|$.
- If $f(a)=b$, then $f^{-1}(b) \stackrel{\text { definition }}{=}\left\{x \in G_{1} ; f(x)=b\right\}$ is equal to the left coset a ker f.
- If H_{1} is a subgroup of G_{1}, then $f\left(H_{1}\right) \stackrel{\text { definition }}{=}\left\{f(x) ; x \in H_{1}\right\}$ is a subgroup of G_{2}. In particular, $\operatorname{Im} f$ is a subgroup of G_{2}.
- If H_{2} is a subgroup of G_{2}, then $f^{-1}\left(H_{2}\right) \stackrel{\text { definition }}{=}\left\{x \in G_{1} ; f(x) \in H_{2}\right\}$ is a subgroup of G_{1}.
- If K is a normal subgroup of G_{2}, then $f^{-1}(K)$ is a normal subgroup of G_{1}. In particular ker f is a normal subgroup of G_{1}.
- f is injective $\Leftrightarrow \operatorname{ker} f=\left\{e_{G_{1}}\right\}$.

22. First Isomorphism Theorem

If $f: G_{1} \rightarrow G_{2}$ is a group homomorphism, then $F: G_{1} / \operatorname{ker} f \rightarrow \operatorname{Im} f, F(x \operatorname{ker} f)=f(x)$ is an isomorphism.
23. If G_{1}, G_{2} are finite groups and $f: G_{1} \rightarrow G_{2}$ is a group homomorphism, then $|\operatorname{Im} f|$ divides both $\left|G_{1}\right|$ and $\left|G_{2}\right|$. So it divides $\operatorname{gcd}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)$.
24. Every normal subgroup H of G is the kernel of a group homomorphism. Namely, it is the kernel of the natural mapping $f: G \rightarrow G / H, f(x)=x H$.
25. Chinese Remainder Theorem

If m, n are two positive integers and $\operatorname{gcd}(m, n)=1$ then for any $a, b \in \mathbb{Z}$ there exists an integer x such that $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$.
26. Fundamental theorem of finite abelian groups

Every finite abelian group G is isomorphic to a group of the form $Z_{p_{1}^{n_{1}}} \oplus Z_{p_{2}^{n_{2}}} \oplus \ldots \oplus Z_{p_{k}^{n_{k}}}$. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by G.
27. If G is a finite group of order n and $m \mid n$, then G has (at least) a subgroup of order m.

Examples of groups

1. \mathbb{Q}, \mathbb{R} are groups under addition. $\mathbb{R}^{*}, \mathbb{Q}^{*}, \mathbb{R}_{+}^{*}, \mathbb{Q}_{+}^{*}$ are groups under multiplication.
2. \mathbb{Z} is a group with + . It is the quintessential example of an infinite cyclic group.

- generated by 1 and $-1 ;$ that is, $\mathbb{Z}=\langle 1\rangle=\langle-1\rangle$
- all its subgroups are cyclic, generated by nonnegative integers; they are of the form $\langle n\rangle=n \mathbb{Z}$
- $m \in\langle n\rangle \Leftrightarrow m$ is a multiple of n

3. Z_{n} is group under addition modulo n. It is the quintessential example of a cyclic group of order n.

- generated by 1
- it is in fact generated by all k with $\operatorname{gcd}(k, n)=1$; these are all its generators
- its subgroups are of the form $\langle d\rangle$ where $d \mid n$; and $|\langle d\rangle|=|d|=n / d$.
- it has $\varphi(d)$ elements of order $d \mid n$ and no elements of any order that does not divide n
- the one and only subgroup of order $d \mid n$ of G has exactly $\varphi(d)$ generators, namely the elements of G of order d

4. $U(n)=\{1 \leq k \leq n ; \operatorname{gcd}(k, n)=1\}$ is a group under multiplication modulo n.

- It has order $\varphi(n)=\varphi\left(p_{1}^{c_{1}}\right) \varphi\left(p_{2}^{c_{2}}\right) \ldots \varphi\left(p_{r}^{c_{r}}\right)$, if $n=p_{1}^{c_{1}} \ldots p_{r}^{c_{r}}$.
- Recall that φ is called Euler's phi function and that $\varphi\left(p^{c}\right)=p^{c-1}(p-1)$.
- The group $U(n)$ is abelian, but not necessarily cyclic. (E.g. $U(8)$ is not cyclic.)
- It is NOT a subgroup of Z_{n} since they don't have the same operation.

5. D_{n} is the group of symmetries of the regular n-sided polygon.

- Its elements are transformations of the 2 -dimensional real plane into itself that leave the polygon in the same position in the plane. So they are function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that preserve a regular n-sided polygon centered at the origin.
- It has $2 n$ elements: n rotations ($R_{0}, R_{2 \pi / n}, \ldots, R_{2(n-1) \pi / n}$) and n flips across the symmetry axes of the polygon.
- It is not abelian.
- Rotation \circ flip $=($ another $)$ flip, flip \circ rotation $=($ yet another $)$ flip, flip \circ flip $=$ rotation
- The elements of D_{n} can be expressed as 2×2 real matrices.

6. $\mathrm{GL}(2, F)$ the group of 2×2 invertible matrices with entries from $F=\mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_{p} (p is a prime). This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_{p}).

- Saying that a matrix is invertible is the same as saying that its determinant has an inverse in F. That means the determinant is $\neq 0$ if $F=\mathbb{Q}, \mathbb{R}, Z_{p}$. But when $F=\mathbb{Z}$ this amounts to the determinant being ± 1.
- It is not abelian.
- Its center is $\{\lambda I ; \lambda \in F\}$, where $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

7. SL $(2, F)$ is the group of 2×2 matrices with entries from $F=\mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_{p} (p is a prime) and determinant 1 . This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_{p}).

- It is not abelian.
- It is a normal subgroup of $\mathrm{GL}(2, F)$.

8. S_{n} the group of permutations of n objects. This is a group under composition.

- It has n ! elements. Half of them are odd permutations and half of them are even permutations.
- It is not abelian.

9. A_{n} the alternating group of order n is the group of even permutations of n objects. This is a group under composition.

- It has $n!/ 2$ elements.
- It is not abelian.
- It is a normal subgroup of S_{n}.

10. $\operatorname{Aut}(G)$ is the group of automorphisms of the group G. It is a group under composition.

- Its unit is Id_{G} the identity map.
- In general it is not abelian.

11. $\operatorname{Inn}(G)$ is the group of inner automorphisms of the group G.

- It is a subgroup of Aut G.
- In general it is not abelian.
- It is isomorphic to $G / Z(G)$.

