Definitions

Group: a set G endowed with an operation $*: G \times G \to G$ that has the following properties.

- well-defined: $a * b \in G$ for all $a, b \in G$;
- associativity: a * (b * c) = (a * b) * c
- unit: there exists an element $e \in G$ such that a * e = e * a = a for all $a \in G$;
- inverses: for every $a \in G$ there exists an element $b \in G$ such that a * b = b * a = e (denoted $b = a^{-1}$).

Abelian (commutative) group: a group (G, *) with the property that a * b = b * a for all $a, b \in G$.

Subgroup of a group (G, *): a subset $H \subset G$ such that (H, *) is a group (same operation as G).

Cyclic subgroup generated by an element $a : \langle a \rangle = \{a^n; n \in \mathbb{Z}\}$. This is the smallest subgroup that contains a.

Cyclic group: A group that is generated by just one of its elements.

Order of a group: the number of elements in that group. Notation: |G|.

Order of an element: the number of elements in the subgroup generated by that element;

 $|a| = |\langle a \rangle| = \begin{cases} \min\{n \ge 1; a^n = e\} & \text{if such a power exists;} \\ \infty & \text{otherwise (i.e. } a^n \ne e \text{ for all } n \ge 1) \end{cases}$

Centralizer of an element *a*: $C(a) = \{b \in G; a * b = b * a\}$ (it is subgroup of *G*).

Center of a group G: $Z(G) = \{b \in G; b * x = x * b \text{ for all } x \in G\}$ (it is a normal subgroup of G).

Cycle of length k: $(a_1 \ldots a_k)$ is the permutation in S_n that takes $a_1 \mapsto a_2, a_2 \mapsto a_3, \ldots a_k \mapsto a_1$ and leaves all other numbers in $\{1, \ldots, n\}$ alone.

Transposition: a 2-cycle (ij) in S_n .

Even permutation: a permutation that is the product of an even number of 2-cycles.

Odd permutation: a permutation that is the product of an odd number of 2-cycles.

Group homomorphism: a map between two groups $f: (G_1, *) \to (G_2, \diamond)$ that is

- well-defined: $a_1 = b_1$ in $G_1 \implies f(a_1) = f(b_1)$ in G_2 .
- operation-preserving: $f(a_1 * b_1) = f(a_1) \diamond f(b_1)$.

Isomorphism of groups: a bijective group isomorphism; i.e. a map between two groups $f : (G_1, *) \to (G_2, \diamond)$ that is

- well-defined: $a_1 = b_1$ in $G_1 \implies f(a_1) = f(b_1)$ in G_2 .
- operation-preserving: $f(a_1 * b_1) = f(a_1) \diamond f(b_1)$ for all $a_1, b_1 \in G_1$.
- one-to-one (injective): $f(a_1) = f(b_1) \implies a_1 = b_1$.
- onto (surjective): for every $a_2 \in G_2$ there exists an element $a_1 \in G_1$ such that $f(a_1) = a_2$.

Isomorphic groups: two groups G_1 and G_2 are isomorphic if it exists an isomorphism $f : G_1 \to G_2$. Notation: $G_1 \cong G_2$ or $G_1 \cong G_2$ or $G_1 \approx G_2$ or $G_1 \simeq G_2$. Automorphism of a group G: an isomorphism $f: G \to G$.

Inner automorphism of G induced by an element $a \in G$: $\phi_a : G \to G$, $\phi_a(x) = axa^{-1}$.

- **External direct product** of the groups G_1, G_2, \ldots, G_n is the group $G_1 \oplus \ldots \oplus G_n = \{(g_1, \ldots, g_n); g_1 \in G_1, \ldots, g_n \in G_n\}$ with the operation performed componentwise.
- **Cosets:** if *H* is a subgroup of *G* and *a* an element of *G*, the left coset of *H* containing *a* is $aH = \{ah; h \in H\}$ and the right coset of *H* containing *a* is $Ha = \{ha; h \in H\}$. In this case, *a* is called the coset representative of *aH* or *Ha*.
- Index of a subgroup $H \subseteq G$ is the number of distinct left cosets of H. It is denoted by |G:H|. (it is also equal to the number of distinct right cosets of H).
- **Normal subgroup:** a subgroup H of the group G for which the left and right cosets coincide, i.e. aH = Ha for all $a \in G$ ($\Leftrightarrow aHa^{-1} = H$ for all $a \in G$). Notation: $H \triangleleft G$.
- **Factor group:** if $H \triangleleft G$, the factor (quotient) group of G by H is $G/H = \{aH; a \in G\}$ the set of left cosets of H in G under the operation (aH)(bH) = (ab)H. We can also say G modulo (mod) H.
- **Internal direct product:** A group G is the internal direct product of H_1, H_2, \ldots, H_m if all the H_i 's are normal subgroups of $G, G = H_1 H_2 \ldots H_m$, abd $(H_1 H_2 \ldots H_i) \cap H_{i+1} = \{e\}$ for all $1 \le i \le m-1$. Notation: $G = H_1 \times H_2 \times \ldots \times H_m$.

Kernel of a group homomorphism $f: G_1 \to G_2$ is ker $f = \{a_1 \in G_1; f(a_1) = e_{G_2}\}$ (subset of G_1).

- **Image** of a group homomorphism $f: G_1 \to G_2$ is $\text{Im} f = \{f(a_1); a_1 \in G_1\}$ (subset of G_2).
- **Isomorphism class:** to determine the isomorphism class of a finite abelian group G means to find a group of the form $Z_{p_1^{n_1}} \oplus Z_{p_2^{n_2}} \oplus \ldots \oplus Z_{p_k^{n_k}}$ which is isomorphic to G. (Note: the primes p_1, \ldots, p_k do NOT have to be distinct.)

Greedy algorithm for an abelian group G of order p^n

- 1. Compute the orders of the elements of G.
- 2. Select an element a_1 of maximum order in G; set $G_1 = \langle a_1 \rangle$ and i = 1.
- 3. If $|G| = |G_1|$, STOP; if not, replace *i* by i + 1.
- 4. Select an element a_i of maximum order p^k such that $p^k \leq \frac{|G|}{|G_{i-1}|}$ and none of the $a_i, a_i^p, \ldots, a_i^{p^{k-1}}$ is in G_{i-1} ; set $G_i = G_{i-1} \times \langle a_i \rangle$.
- 5. Return to step 3.

Theorems

1. Subgroup tests for a nonempty subset H of a group (G, *)

One-step test: $a, b \in H \implies a * b^{-1} \in H$ **Two-step test:** $a, b \in H \implies a * b \in H$ and $a \in H \implies a^{-1} \in H$

- 2. If $|a| < \infty$, then $|a^k| = \frac{|a|}{\gcd(k, |a|)}$.
- 3. If $|a| = \infty$ and $k \neq 0$, then $|a^k| = \infty$.
- 4. Every cyclic group is abelian. Therefore if a group is not abelian, it cannot possibly be cyclic.

THIS IS NOT COMPLETE. MAKE YOUR OWN CHEAT SHEET.

- 5. However, even a nonabelian group has cyclic subgroups, and it can have other abelian subgroups. For instance, the center of G is an abelian subgroup of G.
- 6. An element a generates a finite group $G \Leftrightarrow |a| = |G|$.
- 7. The structure of a cyclic group $G = \langle a \rangle$ of order n
 - every subgroup of G is cyclic
 - the order of every subgroup divides |G|
 - the order of every element of G divides the order of the group
 - for every divisor d of n there exists a unique subgroup H of G with |H| = d; namely H is the cyclic subgroup generated by $a^{n/d}$
 - for every divisor d of n (including n), there are exactly $\varphi(d)$ elements of order d
 - if $k \nmid n$, there are no elements in G of order k
- 8. Permutations.
 - Disjoint cycles commute.
 - The order of a cycle is equal to its length.
 - Every permutation can be written *uniquely* as a product of disjoint cycles. Its order is the lowest common multiple of the lengths of those cycles.
 - Every permutation can be written as a product of transpositions.
 - Each permutations is either even or odd.
 - A cycle of odd length is even.
 - A cycle of even length is odd.
 - $(even) \cdot (even) = even$, $(odd) \cdot (odd) = even$, $(even) \cdot (odd) = odd$.
- 9. Properties of an isomorphism $f: G_1 \to G_2$
 - f^{-1} is an isomorphism.
 - $f(e_{G_1}) = e_{G_2}$.
 - $f(a^{-1}) = f(a)^{-1}$ for all $a \in G_1$.
 - $f(a^n) = f(a)^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$.
 - $ab = ba \Leftrightarrow f(a)f(b) = f(b)f(a).$
 - G_1 is abelian if and only if G_2 is abelian.
 - $G_1 = \langle a \rangle \Leftrightarrow G_2 = \langle f(a) \rangle$. So G_1 is cyclic if and only if G_2 is cyclic.
 - |f(a)| = |a|.
 - $|G_1| = |G_2|$.
 - If G_1 is finite, then G_1 and G_2 have exactly the same number of elements of each order.
 - The equation $x^k = b$ has the same number of solutions in G_1 as does the equation $y^k = f(b)$ in G_2 .
 - If H_1 is a subgroup of G_1 , then $f(H_1)$ is a subgroup of G_2 .
- 10. For every element $a \in G$, the map $\phi_a : G \to G$, $\phi_a(x) = axa^{-1}$ is an isomorphism.
- 11. G is abelian if and only if $\operatorname{Inn} G = {\operatorname{Id}_G}$.
- 12. $\operatorname{Aut}(Z_n) \approx U(n)$.

13. Properties of external direct products.

- $G_1 \oplus \ldots \oplus G_n$ is abelian if and only if each G_i is abelian.
- $|(g_1,\ldots,g_n)| = \operatorname{lcm}(|g_1|,\ldots,|g_n|)$ in $G_1 \oplus \ldots \oplus G_n$.
- If G_1, \ldots, G_n are finite cyclic groups, then $G_1 \oplus \ldots \oplus G_n$ is cyclic if and only if $gcd(|G_i|, |G_j|) = 1$ for all $i \neq j$.
- $Z_{n_1n_2...n_k} \approx Z_{n_1} \oplus \ldots \oplus Z_{n_k}$ if and only if $gcd(n_i, n_j) = 1$ when $i \neq j$.
- If $gcd(n_i, n_j) = 1$ when $i \neq j$, then $U(n_1 \dots n_k) = U(n_1) \oplus \dots \oplus U(n_k)$.
- $U(p^n) \approx Z_{p^n p^{n-1}}$ for a prime p > 2.

14. Properties of cosets (H is a subgroup of $G, a, b \in G$)

- $a \in aH$
- $b \in aH \implies bH = aH$
- $a, b \in G \implies$ either aH = bH or $aH \cap bH = \emptyset$
- $aH = bH \Leftrightarrow a^{-1}b \in H \Leftrightarrow b^{-1}a \in H$
- $Ha = Hb \Leftrightarrow ab^{-1} \in H \Leftrightarrow ba^{-1} \in H$
- aH is a subgroup $\Leftrightarrow aH = H \Leftrightarrow a \in H$
- $\bullet ||aH|| = |Ha|| = |H||$
- $\bullet \ aH = Ha \Leftrightarrow aHa^{-1} = H$
- 15. Lagrange's Theorem

If G is a finite group and H is a subgroup of G, then |H| divides |G| and $|G:H| = \frac{|G|}{|H|}$.

- 16. Consequences of Lagrange's Theorem.
 - The order of every element a of a group G divides the order of G.
 - For all $a \in G$, $a^{|G|} = e$.
 - If G is a group of order p and p is a prime, then G is cyclic (and therefore isomorphic to Z_p).
- 17. Normal subgroup test for a subgroup H of $G : aha^{-1} \in H$ for all $h \in H$ and $a \in G$.
- 18. G/H is a group under left coset multiplication (aH)(bH) = (ab)H. The unit is the coset eH = H and inverses are given by $(aH)^{-1} = (a^{-1})H$.
- Cauchy's Theorem for abelian groups
 If G is a finite abelian group of order n and p is a prime that divides n, then G contains an element of order p.
- 20. If a group G is internal direct product $G = H_1 \times H_2 \times \ldots \times H_m$ of a finite number of (normal) subgroups, then G is isomorphic to the external direct product $H_1 \oplus H_2 \oplus \ldots \oplus H_m$ of those subgroups.
- 21. Properties of homomorphisms: let $f: G_1 \to G_2$ be a group homomorphism. Then
 - $f(e_{G_1}) = e_{G_2}$.
 - $f(a^{-1}) = f(a)^{-1}$ for all $a \in G_1$.
 - $f(a^n) = f(a)^n$ for all $a \in G_1$ and all $n \in \mathbb{Z}$.
 - $ab = ba \implies f(a)f(b) = f(b)f(a).$
 - If |a| is finite, then |f(a)| divides |a|.

THIS IS NOT COMPLETE. MAKE YOUR OWN CHEAT SHEET.

- If f(a) = b, then $f^{-1}(b) \stackrel{\text{definition}}{=} \{x \in G_1; f(x) = b\}$ is equal to the left coset $a \ker f$.
- If H_1 is a subgroup of G_1 , then $f(H_1) \stackrel{\text{definition}}{=} \{f(x); x \in H_1\}$ is a subgroup of G_2 . In particular, Im f is a subgroup of G_2 .
- If H_2 is a subgroup of G_2 , then $f^{-1}(H_2) \stackrel{\text{definition}}{=} \{x \in G_1; f(x) \in H_2\}$ is a subgroup of G_1 .
- If K is a normal subgroup of G_2 , then $f^{-1}(K)$ is a normal subgroup of G_1 . In particular ker f is a normal subgroup of G_1 .
- f is injective $\Leftrightarrow \ker f = \{e_{G_1}\}.$
- 22. First Isomorphism Theorem If $f : G_1 \to G_2$ is a group homomorphism, then $F : G_1/\ker f \to \operatorname{Im} f$, $F(x \ker f) = f(x)$ is an isomorphism.
- 23. If G_1, G_2 are finite groups and $f: G_1 \to G_2$ is a group homomorphism, then $|\operatorname{Im} f|$ divides both $|G_1|$ and $|G_2|$. So it divides $\operatorname{gcd}(|G_1|, |G_2|)$.
- 24. Every normal subgroup H of G is the kernel of a group homomorphism. Namely, it is the kernel of the natural mapping $f: G \to G/H$, f(x) = xH.
- 25. Chinese Remainder Theorem If m, n are two positive integers and gcd(m, n) = 1 then for any $a, b \in \mathbb{Z}$ there exists an integer x such that $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$.
- 26. Fundamental theorem of finite abelian groups Every finite abelian group G is isomorphic to a group of the form $Z_{p_1^{n_1}} \oplus Z_{p_2^{n_2}} \oplus \ldots \oplus Z_{p_k^{n_k}}$. Moreover, the number of terms in the product and the orders of the cyclic groups are uniquely determined by G.
- 27. If G is a finite group of order n and m|n, then G has (at least) a subgroup of order m.

Examples of groups

- 1. \mathbb{Q}, \mathbb{R} are groups under addition. $\mathbb{R}^*, \mathbb{Q}^*, \mathbb{R}^*_+, \mathbb{Q}^*_+$ are groups under multiplication.
- 2. \mathbb{Z} is a group with +. It is the quintessential example of an infinite cyclic group.
 - generated by 1 and -1; that is, $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$
 - all its subgroups are cyclic, generated by nonnegative integers; they are of the form $\langle n \rangle = n\mathbb{Z}$
 - $m \in \langle n \rangle \Leftrightarrow m$ is a multiple of n
- 3. Z_n is group under addition modulo n. It is the quintessential example of a cyclic group of order n.
 - generated by 1
 - it is in fact generated by all k with gcd(k, n) = 1; these are all its generators
 - its subgroups are of the form $\langle d \rangle$ where d|n; and $|\langle d \rangle| = |d| = n/d$.
 - it has $\varphi(d)$ elements of order d|n and no elements of any order that does not divide n
 - the one and only subgroup of order d|n of G has exactly $\varphi(d)$ generators, namely the elements of G of order d
- 4. $U(n) = \{1 \le k \le n; \gcd(k, n) = 1\}$ is a group under multiplication modulo n.
 - It has order $\varphi(n) = \varphi(p_1^{c_1})\varphi(p_2^{c_2})\dots\varphi(p_r^{c_r})$, if $n = p_1^{c_1}\dots p_r^{c_r}$.
 - Recall that φ is called Euler's phi function and that $\varphi(p^c) = p^{c-1}(p-1)$.

THIS IS NOT COMPLETE. MAKE YOUR OWN CHEAT SHEET.

- The group U(n) is abelian, but not necessarily cyclic. (E.g. U(8) is not cyclic.)
- It is NOT a subgroup of Z_n since they don't have the same operation.

5. D_n is the group of symmetries of the regular *n*-sided polygon.

- Its elements are transformations of the 2-dimensional real plane into itself that leave the polygon in the same position in the plane. So they are function $\mathbb{R}^2 \to \mathbb{R}^2$ that preserve a regular *n*-sided polygon centered at the origin.
- It has 2n elements: n rotations $(R_0, R_{2\pi/n}, \ldots, R_{2(n-1)\pi/n})$ and n flips across the symmetry axes of the polygon.
- It is not abelian.
- Rotation \circ flip = (another) flip, flip \circ rotation = (yet another) flip, flip \circ flip = rotation
- The elements of D_n can be expressed as 2×2 real matrices.
- 6. $\operatorname{GL}(2, F)$ the group of 2×2 invertible matrices with entries from $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_p (p is a prime). This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_p).
 - Saying that a matrix is invertible is the same as saying that its determinant has an inverse in F. That means the determinant is $\neq 0$ if $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}_p$. But when $F = \mathbb{Z}$ this amounts to the determinant being ± 1 .
 - It is not abelian.
 - Its center is $\{\lambda I; \lambda \in F\}$, where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 7. SL(2, F) is the group of 2×2 matrices with entries from $F = \mathbb{Q}, \mathbb{R}, \mathbb{Z}$ or Z_p (p is a prime) and determinant 1. This is a group under matrix multiplication (all arithmetic is done in F, so modulo p in case of Z_p).
 - It is not abelian.
 - It is a normal subgroup of GL(2, F).
- 8. S_n the group of permutations of n objects. This is a group under composition.
 - It has n! elements. Half of them are odd permutations and half of them are even permutations.
 - It is not abelian.
- 9. A_n the alternating group of order *n* is the group of *even* permutations of *n* objects. This is a group under composition.
 - It has n!/2 elements.
 - It is not abelian.
 - It is a normal subgroup of S_n .
- 10. $\operatorname{Aut}(G)$ is the group of automorphisms of the group G. It is a group under composition.
 - Its unit is Id_G the identity map.
 - In general it is not abelian.
- 11. $\operatorname{Inn}(G)$ is the group of inner automorphisms of the group G.
 - It is a subgroup of Aut G.
 - In general it is not abelian.
 - It is isomorphic to G/Z(G).