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Definitions

Group: a set G endowed with an operation ∗ : G×G→ G that has the following properties.

• well-defined: a ∗ b ∈ G for all a, b ∈ G;

• associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c
• unit: there exists an element e ∈ G such that a ∗ e = e ∗ a = a for all a ∈ G;

• inverses: for every a ∈ G there exists an element b ∈ G such that a ∗ b = b ∗ a = e (denoted
b = a−1).

Abelian (commutative) group: a group (G, ∗) with the property that a ∗ b = b ∗ a for all a, b ∈ G.

Subgroup of a group (G, ∗): a subset H ⊂ G such that (H, ∗) is a group (same operation as G).

Cyclic subgroup generated by an element a : 〈a〉 = {an;n ∈ Z}. This is the smallest subgroup that
contains a.

Cyclic group: A group that is generated by just one of its elements.

Order of a group: the number of elements in that group. Notation: |G|.

Order of an element: the number of elements in the subgroup generated by that element;

|a| = |〈a〉| =

{
min{n ≥ 1; an = e} if such a power exists;

∞ otherwise (i.e. an 6= e for all n ≥ 1)

Centralizer of an element a: C(a) = {b ∈ G; a ∗ b = b ∗ a} (it is subgroup of G).

Center of a group G: Z(G) = {b ∈ G; b ∗ x = x ∗ b for all x ∈ G} (it is a normal subgroup of G).

Cycle of length k: (a1 . . . ak) is the permutation in Sn that takes a1 7→ a2, a2 7→ a3, . . . ak 7→ a1 and
leaves all other numbers in {1, . . . , n} alone.

Transposition: a 2−cycle (ij) in Sn.

Even permutation: a permutation that is the product of an even number of 2−cycles.

Odd permutation: a permutation that is the product of an odd number of 2−cycles.

Group homomorphism: a map between two groups f : (G1, ∗)→ (G2, �) that is

• well-defined: a1 = b1 in G1 =⇒ f(a1) = f(b1) in G2.

• operation-preserving: f(a1 ∗ b1) = f(a1) � f(b1).

Isomorphism of groups: a bijective group isomorphism; i.e. a map between two groups f : (G1, ∗) →
(G2, �) that is

• well-defined: a1 = b1 in G1 =⇒ f(a1) = f(b1) in G2.

• operation-preserving: f(a1 ∗ b1) = f(a1) � f(b1) for all a1, b1 ∈ G1.

• one-to-one (injective): f(a1) = f(b1) =⇒ a1 = b1.

• onto (surjective): for every a2 ∈ G2 there exists an element a1 ∈ G1 such that f(a1) = a2.

Isomorphic groups: two groups G1 and G2 are isomorphic if it exists an isomorphism f : G1 → G2.
Notation: G1

∼= G2 or G1 u G2 or G1 ≈ G2 or G1 w G2.
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Automorphism of a group G: an isomorphism f : G→ G.

Inner automorphism of G induced by an element a ∈ G: φa : G→ G, φa(x) = axa−1.

External direct product of the groups G1, G2, . . . , Gn is the group G1 ⊕ . . . ⊕ Gn = {(g1, . . . , gn); g1 ∈
G1, . . . , gn ∈ Gn} with the operation performed componentwise.

Cosets: if H is a subgroup of G and a an element of G, the left coset of H containing a is aH = {ah;h ∈ H}
and the right coset of H containing a is Ha = {ha;h ∈ H}. In this case, a is called the coset
representative of aH or Ha.

Index of a subgroup H ⊆ G is the number of distinct left cosets of H. It is denoted by |G : H|. (it is also
equal to the number of distinct right cosets of H).

Normal subgroup: a subgroup H of the group G for which the left and right cosets coincide, i.e. aH = Ha
for all a ∈ G (⇔ aHa−1 = H for all a ∈ G). Notation: H �G.

Factor group: if H�G, the factor (quotient) group of G by H is G/H = {aH; a ∈ G} the set of left cosets
of H in G under the operation (aH)(bH) = (ab)H. We can also say G modulo (mod) H.

Internal direct product: A group G is the internal direct product of H1, H2, . . . ,Hm if all the Hi’s are
normal subgroups of G, G = H1H2 . . . Hm, abd (H1H2 . . . Hi) ∩ Hi+1 = {e} for all 1 ≤ i ≤ m − 1.
Notation: G = H1 ×H2 × . . .×Hm.

Kernel of a group homomorphism f : G1 → G2 is ker f = {a1 ∈ G1; f(a1) = eG2
} (subset of G1).

Image of a group homomorphism f : G1 → G2 is Im f = {f(a1); a1 ∈ G1} (subset of G2).

Isomorphism class: to determine the isomorphism class of a finite abelian group G means to find a group
of the form Zpn1

1
⊕ Zpn2

2
⊕ . . .⊕ Zpnk

k
which is isomorphic to G. (Note: the primes p1, . . . , pk do NOT

have to be distinct.)

Greedy algorithm for an abelian group G of order pn

1. Compute the orders of the elements of G.

2. Select an element a1 of maximum order in G; set G1 = 〈a1〉 and i = 1.

3. If |G| = |G1|, STOP; if not, replace i by i+ 1.

4. Select an element ai of maximum order pk such that pk ≤ |G|
|Gi−1|and none of the ai, a

p
i , . . . , a

pk−1

i

is in Gi−1; set Gi = Gi−1 × 〈ai〉.
5. Return to step 3.

Theorems

1. Subgroup tests for a nonempty subset H of a group (G, ∗)

One-step test: a, b ∈ H =⇒ a ∗ b−1 ∈ H
Two-step test: a, b ∈ H =⇒ a ∗ b ∈ H and a ∈ H =⇒ a−1 ∈ H

2. If |a| <∞, then |ak| = |a|
gcd(k, |a|)

.

3. If |a| =∞ and k 6= 0, then |ak| =∞.

4. Every cyclic group is abelian. Therefore if a group is not abelian, it cannot possibly be cyclic.
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5. However, even a nonabelian group has cyclic subgroups, and it can have other abelian subgroups. For
instance, the center of G is an abelian subgroup of G.

6. An element a generates a finite group G⇔ |a| = |G|.

7. The structure of a cyclic group G = 〈a〉 of order n

• every subgroup of G is cyclic

• the order of every subgroup divides |G|
• the order of every element of G divides the order of the group

• for every divisor d of n there exists a unique subgroup H of G with |H| = d; namely H is the
cyclic subgroup generated by an/d

• for every divisor d of n (including n), there are exactly ϕ(d) elements of order d

• if k - n, there are no elements in G of order k

8. Permutations.

• Disjoint cycles commute.

• The order of a cycle is equal to its length.

• Every permutation can be written uniquely as a product of disjoint cycles. Its order is the lowest
common multiple of the lengths of those cycles.

• Every permutation can be written as a product of transpositions.

• Each permutations is either even or odd.

• A cycle of odd length is even.

• A cycle of even length is odd.

• (even)·(even)=even, (odd)·(odd)=even, (even)·(odd)=odd.

9. Properties of an isomorphism f : G1 → G2

• f−1 is an isomorphism.

• f(eG1
) = eG2

.

• f(a−1) = f(a)−1 for all a ∈ G1.

• f(an) = f(a)n for all a ∈ G1 and all n ∈ Z.
• ab = ba⇔ f(a)f(b) = f(b)f(a).

• G1 is abelian if and only if G2 is abelian.

• G1 = 〈a〉 ⇔ G2 = 〈f(a)〉. So G1 is cyclic if and only if G2 is cyclic.

• |f(a)| = |a|.
• |G1| = |G2|.
• If G1 is finite, then G1 and G2 have exactly the same number of elements of each order.

• The equation xk = b has the same number of solutions in G1 as does the equation yk = f(b) in
G2.

• If H1 is a subgroup of G1, then f(H1) is a subgroup of G2.

10. For every element a ∈ G, the map φa : G→ G, φa(x) = axa−1 is an isomorphism.

11. G is abelian if and only if InnG = {IdG}.

12. Aut(Zn) ≈ U(n).
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13. Properties of external direct products.

• G1 ⊕ . . .⊕Gn is abelian if and only if each Gi is abelian.

• |(g1, . . . , gn)| = lcm(|g1|, . . . , |gn|) in G1 ⊕ . . .⊕Gn.
• If G1, . . . , Gn are finite cyclic groups, then G1⊕ . . .⊕Gn is cyclic if and only if gcd(|Gi|, |Gj |) = 1

for all i 6= j.

• Zn1n2...nk
≈ Zn1

⊕ . . .⊕ Znk
if and only if gcd(ni, nj) = 1 when i 6= j.

• If gcd(ni, nj) = 1 when i 6= j, then U(n1 . . . nk) = U(n1)⊕ . . .⊕ U(nk).

• U(pn) ≈ Zpn−pn−1 for a prime p > 2.

14. Properties of cosets (H is a subgroup of G, a, b ∈ G)

• a ∈ aH
• b ∈ aH =⇒ bH = aH

• a, b ∈ G =⇒ either aH = bH or aH ∩ bH = ∅
• aH = bH ⇔ a−1b ∈ H ⇔ b−1a ∈ H
• Ha = Hb⇔ ab−1 ∈ H ⇔ ba−1 ∈ H
• aH is a subgroup ⇔ aH = H ⇔ a ∈ H
• |aH| = |Ha| = |H|
• aH = Ha⇔ aHa−1 = H

15. Lagrange’s Theorem

If G is a finite group and H is a subgroup of G, then |H| divides |G| and |G : H| = |G|
|H| .

16. Consequences of Lagrange’s Theorem.

• The order of every element a of a group G divides the order of G.

• For all a ∈ G, a|G| = e.

• If G is a group of order p and p is a prime, then G is cyclic (and therefore isomorphic to Zp).

17. Normal subgroup test for a subgroup H of G : aha−1 ∈ H for all h ∈ H and a ∈ G.

18. G/H is a group under left coset multiplication (aH)(bH) = (ab)H. The unit is the coset eH = H and
inverses are given by (aH)−1 = (a−1)H.

19. Cauchy’s Theorem for abelian groups
If G is a finite abelian group of order n and p is a prime that divides n, then G contains an element of
order p.

20. If a group G is internal direct product G = H1×H2×. . .×Hm of a finite number of (normal) subgroups,
then G is isomorphic to the external direct product H1 ⊕H2 ⊕ . . .⊕Hm of those subgroups.

21. Properties of homomorphisms: let f : G1 → G2 be a group homomorphism. Then

• f(eG1) = eG2 .

• f(a−1) = f(a)−1 for all a ∈ G1.

• f(an) = f(a)n for all a ∈ G1 and all n ∈ Z.
• ab = ba =⇒ f(a)f(b) = f(b)f(a).

• If |a| is finite, then|f(a)| divides |a|.
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• If f(a) = b, then f−1(b)
definition

= {x ∈ G1; f(x) = b} is equal to the left coset a ker f.

• If H1 is a subgroup of G1, then f(H1)
definition

= {f(x);x ∈ H1} is a subgroup of G2. In particular,
Im f is a subgroup of G2.

• If H2 is a subgroup of G2, then f−1(H2)
definition

= {x ∈ G1; f(x) ∈ H2} is a subgroup of G1.

• If K is a normal subgroup of G2, then f−1(K) is a normal subgroup of G1. In particular ker f is
a normal subgroup of G1.

• f is injective ⇔ ker f = {eG1}.

22. First Isomorphism Theorem
If f : G1 → G2 is a group homomorphism, then F : G1/ ker f → Im f, F (x ker f) = f(x) is an
isomorphism.

23. If G1, G2 are finite groups and f : G1 → G2 is a group homomorphism, then | Im f | divides both |G1|
and |G2|. So it divides gcd(|G1|, |G2|).

24. Every normal subgroup H of G is the kernel of a group homomorphism. Namely, it is the kernel of the
natural mapping f : G→ G/H, f(x) = xH.

25. Chinese Remainder Theorem
If m,n are two positive integers and gcd(m,n) = 1 then for any a, b ∈ Z there exists an integer x such
that x ≡ a (mod m) and x ≡ b (mod n).

26. Fundamental theorem of finite abelian groups
Every finite abelian group G is isomorphic to a group of the form Zpn1

1
⊕Zpn2

2
⊕ . . .⊕Zpnk

k
. Moreover,

the number of terms in the product and the orders of the cyclic groups are uniquely determined by G.

27. If G is a finite group of order n and m|n, then G has (at least) a subgroup of order m.

Examples of groups

1. Q,R are groups under addition. R∗,Q∗,R∗+,Q∗+ are groups under multiplication.

2. Z is a group with +. It is the quintessential example of an infinite cyclic group.

• generated by 1 and −1; that is, Z = 〈1〉 = 〈−1〉
• all its subgroups are cyclic, generated by nonnegative integers; they are of the form 〈n〉 = nZ
• m ∈ 〈n〉 ⇔ m is a multiple of n

3. Zn is group under addition modulo n. It is the quintessential example of a cyclic group of order n.

• generated by 1

• it is in fact generated by all k with gcd(k, n) = 1; these are all its generators

• its subgroups are of the form 〈d〉 where d|n; and |〈d〉| = |d| = n/d.

• it has ϕ(d) elements of order d|n and no elements of any order that does not divide n

• the one and only subgroup of order d|n of G has exactly ϕ(d) generators, namely the elements of
G of order d

4. U(n) = {1 ≤ k ≤ n; gcd(k, n) = 1} is a group under multiplication modulo n.

• It has order ϕ(n) = ϕ(pc11 )ϕ(pc22 ) . . . ϕ(pcrr ), if n = pc11 . . . pcrr .

• Recall that ϕ is called Euler’s phi function and that ϕ(pc) = pc−1(p− 1).
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• The group U(n) is abelian, but not necessarily cyclic. (E.g. U(8) is not cyclic.)

• It is NOT a subgroup of Zn since they don’t have the same operation.

5. Dn is the group of symmetries of the regular n-sided polygon.

• Its elements are transformations of the 2-dimensional real plane into itself that leave the polygon
in the same position in the plane. So they are function R2 → R2 that preserve a regular n-sided
polygon centered at the origin.

• It has 2n elements: n rotations (R0, R2π/n, . . . , R2(n−1)π/n) and n flips across the symmetry axes
of the polygon.

• It is not abelian.

• Rotation ◦ flip = (another) flip, flip ◦ rotation = (yet another) flip, flip ◦ flip = rotation

• The elements of Dn can be expressed as 2× 2 real matrices.

6. GL(2, F ) the group of 2 × 2 invertible matrices with entries from F = Q,R,Z or Zp (p is a prime).
This is a group under matrix multiplication (all arithmetic is done in F , so modulo p in case of Zp).

• Saying that a matrix is invertible is the same as saying that its determinant has an inverse in
F. That means the determinant is 6= 0 if F = Q,R, Zp. But when F = Z this amounts to the
determinant being ±1.

• It is not abelian.

• Its center is {λI;λ ∈ F}, where I =

[
1 0
0 1

]
.

7. SL(2, F ) is the group of 2 × 2 matrices with entries from F = Q,R,Z or Zp (p is a prime) and
determinant 1. This is a group under matrix multiplication (all arithmetic is done in F , so modulo p
in case of Zp).

• It is not abelian.

• It is a normal subgroup of GL(2, F ).

8. Sn the group of permutations of n objects. This is a group under composition.

• It has n! elements. Half of them are odd permutations and half of them are even permutations.

• It is not abelian.

9. An the alternating group of order n is the group of even permutations of n objects. This is a group
under composition.

• It has n!/2 elements.

• It is not abelian.

• It is a normal subgroup of Sn.

10. Aut(G) is the group of automorphisms of the group G. It is a group under composition.

• Its unit is IdG the identity map.

• In general it is not abelian.

11. Inn(G) is the group of inner automorphisms of the group G.

• It is a subgroup of AutG.

• In general it is not abelian.

• It is isomorphic to G/Z(G).
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