MATH 20C - ANSWERS TO THE NEW PROBLEMS ON THE STUDY GUIDE

ALINA BUCUR

For the other practice problems, see the study guides for the two midterms.

Problem 11:

(a) $\overrightarrow{A B}=\langle\cos t, \sin t\rangle$ and $\overrightarrow{O A}=\langle 10 t, 0\rangle$, so $\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\langle 10 t+\cos t, \sin t\rangle$.

The rear bumper is reached at time $t=\pi$ and the position of B is $(10 \pi-1,0)$.
(b) $\vec{v}(t)=\langle 10-\sin t, \cos t\rangle$, so

$$
|\vec{v}|^{2}=(10-\sin t)^{2}+\cos ^{2} t=100-20 \sin t+\sin ^{2} t+\cos ^{2} t=101-20 \sin t
$$

The speed is then given by $|\vec{v}|=\sqrt{101-20 \sin t}$.
The speed is smallest when $\sin t$ is largest i.e. $\sin t=1$. It occurs when $t=\pi / 2$. At this time, the position of the bug is $(5 \pi, 1)$.
The speed is largest when $\sin t$ is smallest; that happens at the times $t=0$ or π for which the position is then $(0,0)$ and $(10 \pi-1,0)$.

Problem 28:

$\operatorname{Mass}(R)=\iint_{R} \rho(x, y, z) d V=\iint_{R} y d V$.
The equation of the sphere is $x^{2}+y^{2}+(z-2)^{2}=16$.
The shadow of R on the $x y$-plane is given by the quarter of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ that sits in the first quadrant $x, y \geq 0$. So $0 \leq x \leq 2$ and for each x we have $0 \leq y \leq 3 \sqrt{1-\frac{x^{2}}{4}}$. For each point (x, y) in the shadow of R, have $0 \leq z \leq 2+\sqrt{16-x^{2}-y^{2}}$. Hence

$$
\operatorname{Mass}(R)=\int_{0}^{2} \int_{0}^{3 \sqrt{1-\frac{x^{2}}{4}}} \int_{0}^{2+\sqrt{16-x^{2}-y^{2}}} y d z d y d x
$$

Problem 29:

The two surfaces are paraboloids (similar to Example 1 in Lecture 24 on Nov 19). The shadow of the region on the $x y$-plane is determined by the intersection of these two paraboloids. In other words, we need $z=4-x^{2}-y^{2}$ to sit underneath $z=10-4 x^{2}-4 y^{2}$, i.e. $4-x^{2}-y^{2} \leq 10-4 x^{2}-4 y^{2}$. That is, we need $3 x^{2}+3 y^{2} \leq 6 \Leftrightarrow x^{2}+y^{2} \leq 2$. So,

$$
\mathrm{vol}=\iint_{x^{2}+y^{2} \leq 2} \int_{4-x^{2}-y^{2}}^{10-4 x^{2}-4 y^{2}} d V
$$

From here it's best to switch to cylindrical coordinates, so

$$
\mathrm{vol}=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{4-r^{2}}^{10-4 r^{2}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} r\left(6-3 r^{2}\right) d r d \theta=\int_{0}^{2 \pi}\left[3 r^{2}-\frac{3}{4} r^{4}\right]_{r=0}^{r=\sqrt{2}} d \theta=6 \pi
$$

Problem 30: The region R is the triangle formed by the lines $y=x \sqrt{3}, y=x$ and $x=2$.
The angle made by the line $y=x \sqrt{3}$ with the positive x-axis is $\pi / 3$, while the angle made by the line $y=x$ with the positive x-axis is $\pi / 4$. The line $x=2$ crosses the two lines at $(2,2 \sqrt{3})$ and $(2,2)$. The line $x=2$ is given in polar coordinates by $r \cos \theta=2$, hence $r=\frac{2}{\cos \theta}$.
$\int_{0}^{2} \int_{x}^{x \sqrt{3}} x d y d x=\int_{\pi / 4}^{\pi / 3} \int_{0}^{2 / \cos \theta}=r^{2} \cos \theta d r d \theta=\frac{8}{3} \int_{\pi / 4}^{\pi / 3} \frac{1}{\cos ^{2} \theta}=\frac{8}{3}[\tan \theta]_{\theta=\pi / 4}^{\theta=\pi / 3}=\frac{8}{3}(\sqrt{3}-1)$.

Problem 31:

(a) The region of integration is the triangle made by the lines $y=x, y=2 x$ and $x=1$. It has vertices $(0,0),(1,1)$ and $(1,2)$.
(b) For $0 \leq y \leq 1$, have $y / 2 \leq x \leq y$ and for $1 \leq y \leq 2$, have $y / 2 \leq x \leq 1$. So

$$
\int_{0}^{1} \int_{x}^{2 x} d y d x=\int_{0}^{1} \int_{y / 2}^{y} d x d y+\int_{1}^{2} \int_{y / 2}^{1} d x d y
$$

