MATH 20C - ANSWERS TO THE NEW PROBLEMS ON THE STUDY GUIDE

ALINA BUCUR

For the other practice problems, see the study guides for the two midterms.

Problem 11:

The rear bumper is reached at time $t = \pi$ and the position of B is $(10\pi - 1, 0)$. (b) $\vec{v}(t) = \langle 10 - \sin t, \cos t \rangle$, so

$$|\vec{v}|^2 = (10 - \sin t)^2 + \cos^2 t = 100 - 20\sin t + \sin^2 t + \cos^2 t = 101 - 20\sin t.$$

The speed is then given by $|\vec{v}| = \sqrt{101 - 20 \sin t}$.

The speed is smallest when $\sin t$ is largest i.e. $\sin t = 1$. It occurs when $t = \pi/2$. At this time, the position of the bug is $(5\pi, 1)$.

The speed is largest when $\sin t$ is smallest; that happens at the times t = 0 or π for which the position is then (0,0) and $(10\pi - 1, 0)$.

Problem 28:

$$Mass(R) = \iint_{R} \rho(x, y, z) dV = \iint_{R} y dV.$$

The equation of the sphere is $x^2 + y^2 + (z - 2)^2 = 16$.

The shadow of R on the xy-plane is given by the quarter of the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ that sits in the first quadrant $x, y \ge 0$. So $0 \le x \le 2$ and for each x we have $0 \le y \le 3\sqrt{1 - \frac{x^2}{4}}$. For each point (x, y) in the shadow of R, have $0 \le z \le 2 + \sqrt{16 - x^2 - y^2}$. Hence

Mass
$$(R) = \int_0^2 \int_0^{3\sqrt{1-\frac{x^2}{4}}} \int_0^{2+\sqrt{16-x^2-y^2}} y \, dz \, dy \, dx.$$

Problem 29:

The two surfaces are paraboloids (similar to Example 1 in Lecture 24 on Nov 19). The shadow of the region on the xy-plane is determined by the intersection of these two paraboloids. In other words, we need $z = 4 - x^2 - y^2$ to sit underneath $z = 10 - 4x^2 - 4y^2$, i.e. $4 - x^2 - y^2 \le 10 - 4x^2 - 4y^2$. That is, we need $3x^2 + 3y^2 \le 6 \Leftrightarrow x^2 + y^2 \le 2$. So,

$$\operatorname{vol} = \iint_{\substack{x^2 + y^2 \le 2\\1}} \int_{4-x^2 - y^2}^{10 - 4x^2 - 4y^2} dV$$

From here it's best to switch to cylindrical coordinates, so

$$\operatorname{vol} = \int_{0}^{2\pi} \int_{0}^{\sqrt{2}} \int_{4-r^{2}}^{10-4r^{2}} r \, dz \, dr \, d\theta = \int_{0}^{2\pi} \int_{0}^{\sqrt{2}} r(6-3r^{2}) \, dr \, d\theta = \int_{0}^{2\pi} \left[3r^{2} - \frac{3}{4}r^{4} \right]_{r=0}^{r=\sqrt{2}} d\theta = 6\pi.$$

Problem 30: The region R is the triangle formed by the lines $y = x\sqrt{3}$, y = x and x = 2.

The angle made by the line $y = x\sqrt{3}$ with the positive x-axis is $\pi/3$, while the angle made by the line y = x with the positive x-axis is $\pi/4$. The line x = 2 crosses the two lines at $(2, 2\sqrt{3})$ and (2, 2). The line x = 2 is given in polar coordinates by $r \cos \theta = 2$, hence $r = \frac{2}{\cos \theta}$.

$$\int_{0}^{2} \int_{x}^{x\sqrt{3}} x \, dy \, dx = \int_{\pi/4}^{\pi/3} \int_{0}^{2/\cos\theta} = r^{2}\cos\theta \, dr \, d\theta = \frac{8}{3} \int_{\pi/4}^{\pi/3} \frac{1}{\cos^{2}\theta} = \frac{8}{3} \Big[\tan\theta \Big]_{\theta=\pi/4}^{\theta=\pi/3} = \frac{8}{3} (\sqrt{3} - 1).$$

Problem 31:

- (a) The region of integration is the triangle made by the lines y = x, y = 2x and x = 1. It has vertices (0,0), (1,1) and (1,2).
- (b) For $0 \le y \le 1$, have $y/2 \le x \le y$ and for $1 \le y \le 2$, have $y/2 \le x \le 1$. So

$$\int_0^1 \int_x^{2x} dy dx = \int_0^1 \int_{y/2}^y dx dy + \int_1^2 \int_{y/2}^1 dx dy.$$