MATH 20C Lecture 2 - Monday, September 27, 2010

Observations

1. Two vectors pointing in the same direction are scalar multiples of each other.
2. The sum of three head-to-tail vectors in a triangle is 0 .

Lines in space

Polled the students about what kind of object is described by the equation $x+2 y=5$ in the plane. Most got it right (a line). How about the equation $x+2 y+3 z=7$ in space? It's a plane (about half of the students answered correctly, the other half thought it was a line).

So need some other way to think about lines in space. Think of it as the trajectory of a moving point. Express lines by a parametric equations.
In coordinates. For instance, the line through $Q_{0}=(1,2,2)$ and $Q_{1}=(1,3,1)$: moving point $Q(t)=(x, y, z)$ starts at Q_{0} at $t=0$, moves at constant speed along line, reaches Q_{1} at $t=1$. Its "velocity" is $\vec{v}=\overrightarrow{Q_{0} Q_{1}}$, so $\overrightarrow{Q_{0} Q(t)}=t \overrightarrow{Q_{0} Q_{1}}$. In our example we get $\langle x+1, y-2, z-2\rangle=t\langle 2,1,-3\rangle$, i.e.

$$
\left\{\begin{array}{l}
x(t)=-1+2 t \\
y(t)=2+t \\
z(t)=2-3 t
\end{array}\right.
$$

In vector form. The line through a point P in the direction given by some vector \vec{v} is given by

$$
\vec{r}(t)=\overrightarrow{O P}+t \vec{v}
$$

where $\vec{r}(t)$ is the position vector of the point $Q(t)$ on the line. Did example with $P=(0,1,1)$ and $v=\langle 0,5,-1\rangle$. (Not sure I remember the exact numbers, I had made it up on the spot in class.)

Dot product

Definition $\vec{A} \cdot \vec{B}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots($ a scalar, not a vector $)$
Geometrically $\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta$, where θ is the angle between the two vectors.
Explained the result as follows. First, $\vec{A} \cdot \vec{A}=|\vec{A}|^{2} \cos 0=|\vec{A}|^{2}$ is consistent with the definition. Next, consider a triangle with sides \vec{A}, \vec{B} and $\vec{C}=\vec{A}-\vec{B}$. Then the law of cosines gives $|\vec{C}|^{2}=$ $|\vec{A}|^{2}+|\vec{B}|^{2}-2|\vec{A}||\vec{B}| \cos \theta$. On the other hand, we get

$$
|\vec{C}|^{2}=\vec{C} \cdot \vec{C}=(\vec{A}-\vec{B}) \cdot(\vec{A}-\vec{B})=|\vec{A}|^{2}+|\vec{B}|^{2}-2 \vec{A} \cdot \vec{B}
$$

Hence the geometric interpretation is a vector formulation of the law of cosines.

MATH 20C Lecture 3 - Wednesday, September 29, 2010

Recall that $\vec{A} \cdot \vec{B}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+\ldots=|\vec{A}||\vec{B}| \cos \theta$.

Today: applications of the dot product

1. Computing lengths and angles (especially angles): $\cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}$.

For instance, in the triangle in space with vertices at $P=(1,0.0), Q=(0,1,0), R=(0,0,2)$, the angle θ at P :

$$
\cos \theta=\frac{\overrightarrow{P Q} \cdot \overrightarrow{P R}}{|\overrightarrow{P Q}||\overrightarrow{P R}|}=\frac{\langle-1,1,0\rangle \cdot\langle-1,0,2\rangle}{\sqrt{(-1)^{2}+1^{2}+0^{2}} \sqrt{(-1)^{2}+0^{2}+2^{2}}}=\frac{1}{\sqrt{10}}, \quad \theta \approx 71.5^{\circ} .
$$

2. Relative direction of two vectors

$$
\operatorname{sign}(\vec{A} \cdot \vec{B})= \begin{cases}>0 \quad & \text { if } \theta<90^{\circ} \text { (acute angle, the two vectors point more or less in } \\ & \text { the same direction) } \\ =0 \quad, & \text { if } \theta=90^{\circ} \Leftrightarrow \vec{A} \perp \vec{B} \\ <0 & , \text { if } \theta>90^{\circ} \text { (obtuse angle, vectors point away from each other) }\end{cases}
$$

3. Detecting orthogonality: it's worth emphasizing that $\vec{A} \perp \vec{B}=0 \Leftrightarrow \vec{A} \cdot \vec{B}=0$.
4. Finding the component of a vector in a given direction If \vec{u} is a unit vector, the component of a vector A in the direction of \vec{u} has length $|\vec{A}| \cos \theta=|\vec{A}||\vec{u}| \cos \theta=\vec{A} \cdot \vec{u}(\theta=$ the angle between the two vectors). The component itself is a vector called the projection of \vec{A} in the direction of \vec{u}, namely the vector

$$
\vec{A}_{\|}=\operatorname{proj}_{\vec{u}}(\vec{A})=(\vec{A} \cdot \vec{u}) \vec{u} .
$$

The component of \vec{A} in the direction perpendicular to \vec{u} is $\vec{A}_{\perp}=\vec{A}-\vec{A}_{\|}$, so

$$
\vec{A}=\vec{A}_{\|}+\vec{A}_{\perp}
$$

Example: Find the component of $\vec{A}=\langle 1,2,3\rangle$ in the direction of the vector $\vec{v}=\langle 1,1,0\rangle$.
Step 1 Find the unit vector in the direction of \vec{v} :

$$
\vec{u}=\frac{\vec{v}}{|\vec{v}|}=\frac{\langle 1,1,0\rangle}{\sqrt{2}}=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle .
$$

Step 2 Find the length of the component:

$$
\left|\vec{A}_{\|}\right|=\vec{A} \cdot \vec{u}=\frac{1}{\sqrt{2}}+\frac{2}{\sqrt{2}}=\frac{3}{\sqrt{2}}
$$

Step 3 Multiply the results from step 1 and step 2:

$$
\operatorname{proj}_{\vec{v}}(\vec{A})=\frac{3}{\sqrt{2}}\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right\rangle=\left\langle\frac{3}{2}, \frac{3}{2}, 0\right\rangle .
$$

Application: object moving on a frictionless inclined ramp. The physically important quantities are the components of the weight \vec{F} of object (pointing downward) in the direction of the ramp (causes the object to move) and the direction perpendicular to the ramp (creates counter-reaction and keeps the object on the ramp).

5. Planes

The plane $x+2 y+3 z=0$ consists of the points $P=(x, y, z)$ with the property that $\vec{A} \cdot \overrightarrow{O P}=x+2 y+3 z=0$, where $\vec{A}=\langle 1,2,3\rangle$. This is the same as saying that $\vec{A} \perp \overrightarrow{O P}$.

Area

We can decompose the area of a polygon in the plane into a sum of areas of triangles. The area of the triangle with sides \vec{A} and \vec{B} is $\frac{1}{2}$ base \times height $=\frac{1}{2}|\vec{A}||\vec{B}| \sin \theta=\left(\frac{1}{2}\right.$ area of the parallelogram $)$.

So we need to compute $\sin \theta$. We know how to compute $\cos \theta$. Could do $\sin ^{2} \theta+\cos ^{2} \theta=1$, but get ugly formula. Instead reduce to complementary angle $\theta^{\prime}=\frac{\pi}{2}-\theta$ by considering $\overrightarrow{A^{\prime}}=\vec{A}$ rotated by $90^{\circ}=\frac{\pi}{2}$ counterclockwise (drew a picture).

Then, the area of the parallelogram with sides \vec{A}, \vec{B} is $=|\vec{A}||\vec{B}| \sin \theta=\left|\overrightarrow{A^{\prime}}\right||\vec{B}| \cos \theta^{\prime}=\overrightarrow{A^{\prime}} \cdot \vec{B}$

MATH 20C Lecture 4 - Friday, October 1, 2010

Continued from last time: If $\vec{A}=\left\langle a_{1}, a_{2}\right\rangle$ and $\overrightarrow{A^{\prime}}=\vec{A}$ rotated by $90^{\circ}=\frac{\pi}{2}$ counterclockwise, what are the coordinates of $\overrightarrow{A^{\prime}}$? (showed slide, multiple choice).

Answer: $\left\langle-a_{2}, a_{1}\right\rangle$ (most students got it right).
So area of the parallelogram with sides \vec{A}, \vec{B} is $=\overrightarrow{A^{\prime}} \cdot \vec{B}=\left\langle-a_{2}, a_{1}\right\rangle \cdot\left\langle b_{1}, b_{2}\right\rangle=a_{1} b_{2}-a_{2} b_{1}$.

Determinants in the plane

Definition: The determinant of vectors \vec{A}, \vec{B} is $\operatorname{det}\binom{\vec{A}}{\vec{B}}=\left|\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|=a_{1} b_{2}-a_{2} b_{1}$.
Geometrically: $\quad \operatorname{det}\binom{\vec{A}}{\vec{B}}=\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|= \pm$ area of the parallelogram. (Area is positive, determinant might be negative, so take absolute value.)

Determinants in space

Definition: The determinant of vectors $\vec{A}, \vec{B}, \vec{C}$ is

$$
\operatorname{det}\left(\begin{array}{c}
\vec{A} \\
\vec{B} \\
\vec{C}
\end{array}\right)=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{cc}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

Geometrically: $\operatorname{det}\left(\begin{array}{c}\vec{A} \\ \vec{B} \\ \vec{C}\end{array}\right)= \pm$ the area of the parellipiped with sides $\vec{A}, \vec{B}, \vec{C}$.

Cross-product

Is defined only for 2 vectors in space. Gives a vector (not a scalar, like dot product).

Definition: $\vec{A} \times \vec{B}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=\left|\begin{array}{cc}a_{2} & a_{3} \\ b_{2} & b_{3}\end{array}\right| \hat{\imath}-\left|\begin{array}{ll}a_{1} & a_{3} \\ b_{1} & b_{3}\end{array}\right| \hat{\jmath}+\left|\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right| \hat{k}$ (the 3×3 determinant is a symbolic notation, the actual formula is the expansion).

Geometrically: $\vec{A} \times \vec{B}$ is a vector with

- length: $|\vec{A} \times \vec{B}|=$ area of the parallelogram with sides \vec{A}, \vec{B};
- direction: perpendicular on the plane containing \vec{A}, \vec{B} and pointing in the direction given by the right hand rule.

Right hand rule:

1. extend right hand in direction of \vec{A}
2. curl fingers towards direction of \vec{B}
3. thumb points in same direction as $\vec{A} \times \vec{B}$

Question Compute $\hat{\imath} \times \hat{\jmath}=$? (multiple choice) Answer: \hat{k} (most got it right). Checked both by picture and formula.
Another example: $\vec{A}=\langle 5,2,-7\rangle, \vec{B}=\langle 3,0,1\rangle$. Then

$$
\vec{A} \times \vec{B}=\left|\begin{array}{cc}
2 & -7 \\
0 & 1
\end{array}\right| \hat{\imath}-\left|\begin{array}{cc}
5 & -7 \\
3 & 1
\end{array}\right| \hat{\jmath}+\left|\begin{array}{ll}
5 & 2 \\
3 & 0
\end{array}\right| \hat{k}=2 \hat{\imath}-26 \hat{\jmath}-6 \hat{k}=\langle 2,-26,-6\rangle .
$$

(numbers might be slightly different from the ones in class).
Properties of the cross product:

1. $\vec{B} \times \vec{A}=-\vec{A} \times \vec{B}$
2. $(2 \vec{A}) \times(3 \vec{B})=6(\vec{A} \times \vec{B})$
3. $\vec{A} \times(\vec{B}+\vec{C})=\vec{A} \times \vec{B}+\vec{A} \times \vec{C}$
4. $\vec{A} \times \vec{A}=0$
