## MATH 20C Lecture 27 - Monday, November 29, 2010

## Polar coordinates

Recall: in the plane, $x=r \cos \theta, y=r \sin \theta$ where $r$ is the distance from the origin to the $(x, y)$ point, $\theta$ is the angle with the positive $x$-axis. Drawn picture.
Useful if either integrand or region have a simpler expression in polar coordinates.
Area element: $\Delta A \approx(r \Delta \theta) \Delta r$ (picture drawn of a small element with sides $\Delta r$ and $r \Delta \theta$ ). Taking Deltar, $\Delta \theta \rightarrow 0$, we get

$$
d A=r d r d \theta
$$

Example (from way back in Lecture 22):

$$
\iint_{x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1}\left(1-x^{2}-y^{2}\right) d x d y=\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\int_{0}^{\pi / 2}\left[\frac{r^{2}}{2}-\frac{r^{4}}{4}\right]_{r=0}^{r=1} d \theta=\frac{\pi}{8}
$$

Once again,

$$
\iint_{R} f(x, y) d A=\iint_{R} f(r, \theta) r d r d \theta
$$

In general: when setting up $\iint f r d r d \theta$, find bounds as usual: given a fixed $\theta$, find initial and final values of $r$ (sweep region by rays).

## Cylindrical coordinates

$(r, \theta, z)$ where $x=r \cos \theta, y=r \sin \theta$. (Drawn picture.) Here $r$ measures distance from $z$-axis, $\theta$ measures angle from $x z$-plane, $z$ is still the height.
Cylinder of radius 8 centered on $z$-axis is $r=8$ (drawn); $\theta=\pi / 3$ is a vertical half-plane (drawn). Volume element: $d V=d A d z$; in cylindrical coordinates, $d A=r d r d \theta$, so

$$
d V=r d r d \theta d z
$$

Example (from Lecture 23): $R$ : the region between paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$. The shadow on the $x y$-plane is the disk $x^{2}+y^{2} \leq 2$ of radius $\sqrt{2}$. The volume of $R$ is

$$
\iiint_{R} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r^{2}}\left(4-r^{2}\right) r d z d r d \theta=\ldots
$$

Once again,

$$
\iiint_{R} f(x, y, z) d V=\iiint_{R} f(r, \theta, z) r d r d \theta d z
$$

Example $R$ : portion of the half-cylinder $x^{2}+y^{2} \leq 4, x \geq 0$ such that $0 \leq z \leq 3 y$. Compute the mass of the solid in the shape of $R$ with mass-density given by $\rho(x, y, z)=z^{2}$.

Again, it's natural to set this up in cylindrical coordinates. The bounds for $z$ are clear: $z_{\min }=0$ and $z_{\max }=3 y=3 r \sin \theta$. The shadow on the $x y$-plane is the quarter disk $x^{2}+y^{2} \leq 1, x \leq 0, y \leq 0$.

$$
\begin{aligned}
\operatorname{Mass}(R)=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{3 r \sin \theta} z^{2} r d z d r d \theta=\int_{0}^{\pi / 2} & \int_{0}^{1} r\left[\frac{z^{3}}{3}\right]_{z=0}^{z=3 r \sin \theta} d r d \theta \\
& =\int_{0}^{\pi / 2} \int_{0}^{1} 9 r^{4} \sin ^{3} \theta d r d \theta=9 \int_{0}^{\pi / 2} \frac{32}{5} \sin ^{3} \theta d \theta
\end{aligned}
$$

To evaluate this last integral, write $\sin ^{3} \theta=\sin \theta\left(1-\cos ^{2} \theta\right)$ and use the substitution $u=\cos \theta$. Do not forget to change the bounds of integration!

## MATH 20C Lecture 28 - Wednesday, December 1, 2010

## Review topics

- vectors: quantities that have length and direction
- operation with vectors (addition, subtraction, multiplication by scalars, dot product, cross product);
- determinants, area, volume;
- equations of lines and planes in 3 -space (normal vectors)
- decomposing a vector into a components along specified direction (projection, $\vec{v}_{\|}$and $\vec{v}_{\perp}$ )
- parametric equations
- calculus with vectors: limits, differentiation (product rules, chain rule), integration;
- velocity and acceleration vectors; speed and arc length
- tangent line to a trajectory
- Functions of several variables, contour plots.
- Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.
- higher order partial derivatives
- chain rule, change of variables, implicit differentiation
- Min/max problems: critical points, second derivative test, checking boundary. (least squares won't be on the exam)
- Min/max for non-independent variables: Lagrange multipliers. Second derivative test does NOT work! Plug in values or use geometry.


## MATH 20C Lecture 29 - Friday, December 3, 2010

## Review (continued)

- Double integrals: drawing picture of region, taking slices to set up the iterated integral
- Same in polar coordinates (recall that $d A=d x d y=r d r d \theta$ ).

Example: Write in polar coordinates $\iint_{R} f(x, y) d A$ for $R$ the disk of radius 1 centered at $(1,0)$. (Picture drawn)
Since we are at the right of the $y$-axis, get $-\pi / 2 \leq \theta \leq \pi / 2$. For each, theta can use geometry to see $0 \leq r \leq 2 \cos \theta$. Or can deduce the same with algebra, as follows. The equation of the circle is $(x-1)^{2}+y^{2}=1$. Substitute polar coordinates $(x=r \cos \theta, y=r \sin \theta)$ and get $r(r-2 \cos \theta)=0$. Hence $r=0$ and $r=2 \cos \theta$ are the two endpoints of the ray at $\theta$. Get

$$
\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 \cos \theta} f(r, \theta) r d r d \theta
$$

- Triple integrals in rectangular and cylindrical coordinates $(d V=d A d z)$ : setup, pictures.
- For evaluation, need to know: usual basic integrals (e.g. $\int \frac{d x}{x}$ ); integration by substitution (e.g. $\int_{0}^{1} \frac{2 t d t}{\sqrt{1+t^{2}}}=\int_{1}^{2} \frac{d u}{\sqrt{u}}$ by setting $u=1+t^{2}$ ), integration by parts. DO NOT need to know: complicated trigonometric integrals (e.g. $\int \cos ^{4} \theta d \theta$ ).
- Applications: area, volume, mass, average and weighted average of a function, center of mass.

Next we discussed problems 28,30 and 31 from the study guide.

This is it. Good luck on the exam!

