MATH 20C - Monday, October 18, 2010: first midterm

MATH 20C Lecture 11 - Wednesday, October 20, 2010

Functions of several variables

Recall: for a function of 1 variable, we can plot its graph, and the derivative is the slope of the tangent line to the graph. Plotting graphs of functions of 2 variables: examples $z=-y$, $z=1-x^{2}-y^{2}$, using slices by the coordinate planes. (derived carefully). Contour map: level curves $f(x, y)=c$. Amounts to slicing the graph by horizontal planes $z=c$.

Showed 2 examples from "real life": a topographical map, and a temperature map, then did the examples $z=-y$ and $z=1-x^{2}-y^{2}$. Showed more examples of computer plots $\left(z=y^{2}-x^{2}\right.$, and another one).
Contour map gives some qualitative info about how f varies when we change x, y. (shown an example where increasing x leads f to increase).

MATH 20C Lecture 12 - Friday, October 22, 2010

Reviewed countour maps and level curves.

Limits

By substitution:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}+2 y-5 \cos (4(x+y))}{x y-e^{x-y}}=\frac{0+0-5}{0-1}=5
$$

Disclaimer: limits do not always exist!
For instance, take $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$. Direct substitution does not work. Drawn contour map. We see that a bunch of level curves intersect at $(0,0)$, so the limit does not exist.

On the other hand $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x+y)}{(x+y)}=1$.

Partial derivatives

$f_{x}=\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} ;$ same for f_{y}.
Geometric interpretation: f_{x}, f_{y} are slopes of tangent lines of vertical slices of the graph of f (fixing $y=y_{0}$; fixing $x=x_{0}$).
How to compute: treat x as variable, y as constant.
Example: $f(x, y)=x^{3} y+y^{2}$, then $f_{x}=3 x^{2} y, f_{y}=x^{3}+2 y$.
Another example: $g(x, y)=\cos \left(x^{3} y+y^{2}\right)$.
Use chain rule (version I)

$$
\frac{\partial F}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}
$$

Here $F(u)=\cos u$ and $u=f$, so get $\frac{\partial g}{\partial x}=-\left(3 x^{2} y\right) \sin \left(x^{3} y+y^{2}\right)$.
Product rule:

$$
\frac{\partial(f g)}{\partial x}\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right) \frac{\partial f}{\partial x}+f\left(x_{0}, y_{0}\right) \frac{\partial g}{\partial x}
$$

