MATH 20C Lecture 13 - Monday, October 25, 2010

Recall chain rule I: $g=F(u)$ and $u=u(x, y)$, then $\frac{\partial g}{\partial x}=\frac{d F}{d u} \frac{\partial u}{\partial x}$. Used this to compute the partial derivatives of $g(x, y, z)=\ln \left(x^{2}+y^{2}-x z\right)$. Get

$$
\frac{\partial g}{\partial x}=\frac{2 x-z}{x^{2}+y^{2}-x z}, \quad \frac{\partial g}{\partial y}=\frac{2 y}{x^{2}+y^{2}-x z}, \quad \frac{\partial g}{\partial z}=\frac{-x}{x^{2}+y^{2}-x z} .
$$

Higher order partial derivatives

Are computed by taking successive partial derivatives. For instance $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$ and so on.
Computed

$$
\begin{aligned}
\frac{\partial^{2} g}{\partial z \partial x} & =\frac{\partial x}{\partial z}\left(\frac{\partial g}{\partial x}\right)=\frac{\partial}{\partial z}\left(\frac{2 x-z}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(2 x-z)(-x)}{\left(x^{2}+y^{2}-x z\right)^{2}} \\
\frac{\partial^{2} g}{\partial x \partial z} & =\frac{\partial}{\partial x}\left(\frac{\partial g}{\partial z}\right)=\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}-x z}\right)=\frac{(-1)\left(x^{2}+y^{2}-x z\right)-(-x)(2 x-z)}{\left(x^{2}+y^{2}-x z\right)^{2}}
\end{aligned}
$$

Notice that $\frac{\partial^{2} g}{\partial z \partial x}=\frac{\partial^{2} g}{\partial x \partial z}$. This is no coincidence. In general,

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial f}{\partial y \partial x}
$$

MATH 20C Lecture 14 - Wednesday, October 27, 2010

Recall that the gradient vector of $f(x, y, z)$ is $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle$. Using this notation, the chain rule can be re-written as follows. Consider a function $f(x, y, z)$ with $x=x(t), y=y(t), z=z(t)$. On the path described by $\vec{r}(t)=\langle x(t), y(t)\rangle$, we have

$$
\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}=\nabla f \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle .
$$

That is,

$$
\frac{d f}{d t}=\nabla f \cdot \frac{d \vec{r}}{d t}=\nabla f \cdot \vec{v}
$$

where \vec{v} is the velocity vector.
Note: ∇f is a vector whose value depends on the point (x, y) where we evaluate f.
Theorem: ∇f is perpendicular to the level surfaces $f=c$. Proof: take a curve $\vec{r}=\vec{r}(t)$ contained inside level surface $f=c$. Then velocity $\vec{v}=d \vec{r} / d t$ is in the tangent plane, and by chain rule, $d w / d t=\nabla f \cdot v e c v=0$, so $\vec{v} \perp \nabla f$. This is true for every \vec{v} in the tangent plane.
Example: $f=x^{2}+y^{2}$, then $f=c$ are circles, $\nabla w=\langle 2 x, 2 y\rangle$ points radially out so \perp circles.

Application: the tangent plane to a surface $f(x, y, z)=c$ at a point P is the plane through P with normal vector $\nabla f(P)$.
Example: tangent plane to $x^{2}+y^{2}-z^{2}=4$ at $(2,1,1)$: gradient is $\langle 2 x, 2 y,-2 z\rangle=\langle 4,2,-2\rangle$; tangent plane is $4 x+2 y-2 z=8$. (Here we could also solve for $z= \pm \sqrt{x^{2}+y^{2}-4}$ and use linear approximation formula, but in general we can't.)

Another way to get the tangent plane: $\Delta f \approx 4 \Delta x+2 \Delta y-2 \Delta z$. On the level surface we have $\Delta f=0$, so its tangent plane approximation is $4 \Delta x+2 \Delta y-2 \Delta z=0$, i.e. $4(x-2)+2(y-1)-2(z-1)=$ 0 , same as above.
Example: Find the equation of the tangent line at the point $P=(1,0,1)$ to the curve obtained by intersecting the surfaces $x^{2}+y^{2}+z^{2}=2$ and $x^{2}+y^{2}-z^{3}=0$.

One could try to parametrize the curve and then find the tangent line, but that's hard. Instead, set $f=x^{2}+y^{2}+z^{2}$ and $g=x^{2}+y^{2}-z^{3}$. The tangent line is the intersection of the tangent plane to the first surface $f=2$ with the tangent plane to the second surface $g=0$. The two planes have normal vectors $\nabla f(P)=\langle 2,0,2\rangle$ and $\nabla g(P)=\langle 2,0,-3\rangle$ respectively. Both these vectors are therefore \perp to the tangent line, which means that the tangent line $\|$ to their cross product. Since $\nabla f(P) \times \nabla g(P)=\langle 0,10,0\rangle$, the equation of the tangent line is

$$
\vec{L}(\theta)=\langle 1,0,1\rangle+\theta\langle 0,10,0\rangle .
$$

Directional derivatives

We want to know the rate of change of f as we move (x, y) in an arbitrary direction.
Take a unit vector \hat{u} and look at the cross-section of the graph of f by the vertical plane parallel to \hat{u} and passing through the point (x, y). This is a curve passing through the point $P=(x, y, z=f(x, y))$ and we want to compute the slope the tangent line to this curve at P.

Notice that $\frac{\partial f}{\partial x}$ is the directional derivative in the direction of $\hat{\imath}$ and $\frac{\partial f}{\partial y}$ is the directional derivative in the direction of $\hat{\jmath}$.

MATH 20C Lecture 15 - Friday, October 29, 2010

Directional derivatives

Notation: $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$ denotes the derivative of f in the direction of the unit vector \hat{u} at the point $\left(x_{0}, y_{0}\right)$.

Shown $f=x^{2}+y^{2}+1$, and rotating slices through a point of the graph.

How to compute

Say that $\hat{u}=\langle a, b\rangle$. In order to compute $D_{\hat{u}} f\left(x_{0}, y_{0}\right)$, look at the straight line trajectory $\vec{r}(s)$ through $\left(x_{0}, y_{0}\right)$ with velocity \hat{u} given by $x(s)=x_{0}+a s, y(s)=y_{0}+b s$. Then by definition $D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\frac{d f}{d s}$. This we can compute by chain rule to be $\frac{d f}{d s}=\nabla f \cdot \frac{d \vec{r}}{d s}$. Hence

$$
D_{\hat{u}} f\left(x_{0}, y_{0}\right)=\nabla f\left(x_{0}, y_{0}\right) \cdot \hat{u} .
$$

Example 1 Compute the directional derivative of $f=x^{2}+y^{3}$ at $P=(2,1)$ in the direction of $\vec{v}=\langle 4,3\rangle$.
$\nabla f=\left\langle 2 x, 3 y^{2}\right\rangle$ so $\nabla f(P)=\langle 4,3\rangle$. The unit vector in the direction of \vec{v} is $\hat{u}=\vec{v} /|\vec{v}|=\langle 4 / 5,3 / 5\rangle$. So $D_{\hat{u}} f(P)=\nabla f(P) \cdot \hat{u}=5$. Therefore f is increasing in the direction of \vec{v}.

Example 2 Compute the directional derivative of $g=x e^{-y z}$ at $P=(1,2,0)$ in the direction of $\vec{v}=\langle 1,1,1\rangle$.
$\nabla g=\left\langle e^{-y z},-x z e^{-y z},-x y e^{-y z}\right\rangle$ so $\nabla g(P)=\langle 1,0,-2\rangle$. The unit vector in the direction of \vec{v} is $\hat{u}=\vec{v} /|\vec{v}|=\langle 1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3}\rangle$. So $D_{\hat{u}} g(P)=\nabla g(P) \cdot \hat{u}=-1 / \sqrt{3}$. Therefore g is decreasing in the direction of \vec{v}.

Geometric interpretation: $D_{\hat{u}} f=\nabla f \cdot \hat{u}=|\nabla f| \cos \theta$. Maximal for $\cos \theta=1$, when \hat{u} is in direction of ∇f. Hence: direction of ∇f is that of fastest increase of f, and $|\nabla f|$ is the directional derivative in that direction.
It's minimal in the opposite direction.
We have $D_{\hat{u}} f=0$ when $\hat{u} \perp \nabla f$, i.e. when \hat{u} is tangent to direction of level surface.

Chain rule with more variables

For example $w=f(x, y), x=x(u, v), y=y(u, v)$. Then we can view f as a function of u and v. The partial derivatives with respect to these new variables are

$$
\begin{aligned}
& \frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

The idea behind each formula is that changing u causes both x and y to change, at rates $\partial x / \partial u$ and $\partial y / \partial u$. The change in x affects f at the rate of $\partial f / \partial x$, for a total effect of $\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}$. At the same time, the change in y affects f at the rate of $\partial f / \partial y$, for a total effect of $\frac{\partial f}{\partial y} \frac{\partial y}{\partial u}$. Finally, the two effects add up to produce the change in f given by the first line in the boxed formula.

Example: polar coordinates.
$x=r \cos \theta, y=r \sin \theta$. Then $\frac{d f}{d r}=f_{x} \frac{\partial x}{\partial r}+f_{y} \frac{\partial y}{\partial r}=f_{x} \cos \theta+f_{y} \sin \theta$, and similarly $\frac{d f}{d \theta}$.

