MATH 20C Lecture 13 - Monday, October 25, 2010

F
Recall chain rule I: ¢ = F'(u) and u = u(x,y), then gg C; gu Used this to compute the partial
i u Oz
derivatives of g(z,y, z) = In(2? 4+ y% — 22). Get
dg 2¢ — z dg 2y 0g —x
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Higher order partial derivatives

Are computed by taking successive partial derivatives. For instance a—f 6@ (%) and so on.
Computed
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Notice that 24 = . This is no coincidence. In general,
0z0x Bz
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Recall that the gradient vector of f(z,y,z)is Vf = <gf, ?, gf> . Using this notation, the chain
xz’ Oy’ 0z

rule can be re-written as follows. Consider a function f(z,y,z) with x = z(t),y = y(t),z = 2(t).

On the path described by 7(t) = (z(t),y(t)), we have

4 _ vy e dy dz
fx +fydt+fz =Vi\wawal
That is,
df dar R

where ¥ is the velocity vector.

Note: Vf is a vector whose value depends on the point (z,y) where we evaluate f.

Theorem: Vf is perpendicular to the level surfaces f = ¢. Proof: take a curve 7= 7(t) contained
inside level surface f = c. Then velocity ¥ = d7/dt is in the tangent plane, and by chain rule,
dw/dt =V f -vecv =0, so ¥ L Vf. This is true for every ¥ in the tangent plane.

Ezample: f = 2?4+ y?, then f = c are circles, Vw = (2x, 2y) points radially out so L circles.



Application: the tangent plane to a surface f(z,y,z) = ¢ at a point P is the plane through P
with normal vector V f(P).

Ezample: tangent plane to 22 + y? — 22 = 4 at (2,1,1) : gradient is (2x,2y, —2z) = (4,2, —2);
tangent plane is 4z + 2y — 22 = 8. (Here we could also solve for z = ++1/22 + y2 — 4 and use linear
approximation formula, but in general we can’t.)

Another way to get the tangent plane: Af ~ 4Ax + 2Ay — 2Az. On the level surface we have
Af = 0, so its tangent plane approximation is 4Az+2Ay—2Az = 0, i.e. 4(x—2)4+2(y—1)—2(z—1) =
0, same as above.

Ezample: Find the equation of the tangent line at the point P = (1,0,1) to the curve obtained by
intersecting the surfaces x? 4+ y? + 22 = 2 and 2% + ¢ — 23 = 0.

One could try to parametrize the curve and then find the tangent line, but that’s hard. Instead,
set f =22 +y?+2%2and g = 22 + 3% — z3. The tangent line is the intersection of the tangent
plane to the first surface f = 2 with the tangent plane to the second surface g = 0. The two planes
have normal vectors V f(P) = (2,0,2) and Vg(P) = (2,0, —3) respectively. Both these vectors are
therefore | to the tangent line, which means that the tangent line || to their cross product. Since
Vf(P)x Vg(P) = (0,10,0), the equation of the tangent line is

L(0) = (1,0,1) + 6(0, 10, 0).

Directional derivatives

We want to know the rate of change of f as we move (z,y) in an arbitrary direction.

Take a unit vector u and look at the cross-section of the graph of f by the vertical plane
parallel to @ and passing through the point (z,y). This is a curve passing through the point
P =(z,y,z = f(z,y)) and we want to compute the slope the tangent line to this curve at P.

Notice that % is the directional derivative in the direction of 7 and %gjj is the directional derivative
in the direction of j.
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Directional derivatives

Notation: D;f(xo,yo) denotes the derivative of f in the direction of the unit vector @ at the point
($07 yO) :

Shown f = x? 4+ y? + 1, and rotating slices through a point of the graph.
How to compute
Say that @ = (a, b). In order to compute Dy f(z0, yo), look at the straight line trajectory 7(s) through
(20, yo) with velocity @ given by z(s) = xg+as, y(s) = yo+bs. Then by definition Dy f(z0, yo)

= s
This we can compute by chain rule to be Z—f =Vf- ? Hence
s s

| Daf (x0.40) = Vf (20, 30) - .




Ezample 1 Compute the directional derivative of f = 22 4+ 3> at P = (2,1) in the direction of
0= (4,3).

Vf = (2x,3y?) so Vf( ) = (4,3). The unit vector in the direction of ¥ is & = ¥/|0] = (4/5,3/5).
So Dy f(P) =V f(P)-4=5. Therefore f is increasing in the direction of 7.

Ezample 2 Compute the directional derivative of g = ze %% at P = (1,2,0) in the direction of
v=(1,1,1).

Vg = (e7Y*, —xze Y%, —zye Y?) so Vg(P) = (1, O 2). The unit vector in the direction of ¥/ is
o = v/|v] = (1/v3,1/v/3,1/V/3). So Dag(P) = Vg(P) - @t = —1/+/3. Therefore g is decreasing in
the direction of v.

Geometric interpretation: D;f = Vf -4 = |V f|cosf. Maximal for cos§ = 1, when @ is in
direction of V f. Hence: direction of V f is that of fastest increase of f, and |V f]| is the directional
derivative in that direction.

It’s minimal in the opposite direction.

We have D f =0 when @ L Vf, i.e. when @ is tangent to direction of level surface.

Chain rule with more variables

For example w = f(z,y), © = z(u,v),y = y(u,v). Then we can view f as a function of u and v.
The partial derivatives with respect to these new variables are

of 8f8x+8i@
Ou Oz du  dyou

of 8f8x+3f8y
v Oz dv Ay v

The idea behind each formula is that changing u causes both x and y to change, at rates dz/0u
and Jy/0u. The change in z affects f at the rate of df/0x, for a total effect of 8f 8”” . At the same
time, the change in y affects f at the rate of Jf/0y, for a total effect of 8f 8y Flnally, the two
effects add up to produce the change in f given by the first line in the boxed formula

Ezample: polar coordinates.
d 0 0 d
z =rcosf,y=rsinf. Then dl; = f‘rﬁiﬁ + fyaqu = fycosf + fysinf, and similarly d—é



