MATH 20C Lecture 16 - Monday, November 1, 2010

Implicit differentiation

Example: $x^{2}+y z+z^{3}=8$. Viewing $z=z(x, y)$, compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Take $\frac{\partial}{\partial x}$ of both sides of $x^{2}+y z+z^{3}=8$. Get $2 x+y \frac{\partial z}{\partial x}+3 z^{2} \frac{\partial z}{\partial x}=0$, hence $\frac{\partial z}{\partial x}=-\frac{2 x}{y+3 z^{2}}=-\frac{2}{3}$.
In general, consider a surface $F(x, y, z)=c$. The we can view $z=z(x, y)$ as a function of two independent variables x, y and compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. To do so, we take the partial derivative with respect to x of both sides of the equation $F(x, y, z)=c$ and get (by the chain rule)

$$
\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0 .
$$

But $\partial x / \partial x=1$ and, since x and y are independent, $\partial y / \partial x=0$ (changing x does not affect y). Hence the equation above really says that $F_{x}+F_{z} \frac{\partial z}{\partial x}=0$ which implies

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} .
$$

Similarly,

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}} .
$$

Changing gears, let's see how we can recover f from its gradient. Say $\nabla f=\left\langle 3 x^{2} y, x^{3}+2 z, 2 y+\right.$ $\cos z\rangle$. We proceed by successive integration. We are given that $f_{x}=3 x^{2} y$. Integrating with respect to x (view y, z as constants), we see that $f=x^{3} y+g(y, z)$. Therefore

$$
f_{y}=x^{3}+\frac{\partial g}{\partial y} .
$$

But we know from the gradient that $f_{y}=x^{3}+2 z$, hence $g_{y}=2 z$. Integrate with respect to y and get $g=2 y z+h(z)$, hence $f=x^{3} y+2 y z+h(z)$. Since $f_{z}=2 y+\cos z$ we get that $\frac{d h}{d z}=\cos z$, so $h(z)=\sin z+C$. Substituting in the expression of f gives $f=x^{3} y+2 y z+\sin z+C$.

Min/max in several variables

At a local max or min, $f_{x}=0$ and $f_{y}=0$ (since $\left(x_{0}, y_{0}\right)$ is a local max or min of the slice). Because 2 lines determine tangent plane, this is enough to ensure that the tangent plane is horizontal.
Definition A critical point of f is a point $\left(x_{0}, y_{0}\right)$ where $f_{x}=0$ and $f_{y}=0$.
A critical point may be a local min, local max, or saddle. Or degenerate.
Example: $f(x, y)=x^{2}-2 x y+3 y^{2}+2 x-2 y$. Critical point: $f_{x}=2 x-2 y+2=0, f_{y}=2 x+6 y-2=0$, gives $\left(x_{0}, y_{0}\right)=(-1,0)$ (only one critical point).

A critical point may be a local min, local max, or saddle. Or degenerate. Pictures shown of each type. To decide, apply second derivative test.

Definition The hessian matrix of f is

$$
H(x, y)=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]
$$

Second derivative test

Let $\left(x_{0}, y_{0}\right)$ be a critical point of f.
Case $1 \operatorname{det} H>0, f_{x x}>0:\left(x_{0}, y_{0}\right)$ is a local minimum
Case $2 \operatorname{det} H>0, f_{x x}<0:\left(x_{0}, y_{0}\right)$ is a local maximum
Case $3 \operatorname{det} H<0:\left(x_{0}, y_{0}\right)$ is a saddle point
Case $4 \operatorname{det} H=0$: cannot tell (need higher order derivatives)

MATH 20C Lecture 17 - Wednesday, November 3, 2010

Example 1 Find the local min/max of $f(x, y)=x+y+\frac{1}{x y}$.
Step 1 Find critical points by solving the 2×2 system of equations

$$
\left\{\begin{array}{l}
f_{x}=0 \\
f_{y}=0
\end{array}\right.
$$

In this case, the system is

$$
\left\{\begin{array}{l}
\frac{1}{x^{2} y}=1 \\
\frac{1}{x y^{2}}=1
\end{array}\right.
$$

Divide the first equation by the second and get $x=y$, plug back into the first equation and get $x^{3}=1$. So the only critical point is $(1,1)$.

Showed slide asking students if this point is a local max/min or saddle. Most got it right (local min). Now let's do it rigorously.

Step 2 Compute the Hessian matrix

$$
H(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]
$$

Recall that $f_{x y}=f_{y x}$.
In our case, get $H(x, y)=\left[\begin{array}{cc}\frac{2}{x^{3} y} & \frac{1}{x^{2} y^{2}} \\ \frac{1}{x^{2} y^{2}} & \frac{2}{x y^{3}}\end{array}\right]$.

Step 2 Compute the Hessian matrix at each of the critical points.

$$
H(1,1)=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Step 4 Apply the second derivative test for each critical point.
det $H(1,1)=4-1=3>0$ and $f_{x x}=2>0$, so $(1,1)$ is a local minimum.
Attention! We can also infer the nature of a critical point from the contour plot. Showed picture and discussed possibilities. Most students got the right answer.

Example 2 $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$
Step 1 Find critical points by solving the 2×2 system of equations

$$
\left\{\begin{array}{l}
f_{x}=0 \\
f_{y}=0
\end{array}\right.
$$

In this case, the system is

$$
\left\{\begin{array}{l}
\left(2 x-x^{2}-y^{2}\right) e^{-x}=0 \\
2 y e^{-x}=0 .
\end{array}\right.
$$

The second equation tells us that $y=0$. Plug back into the first equation and get $x^{2}-2 x=0$. So critical points are $(0,0)$ and $(2,0)$.

Step 2 Compute the Hessian matrix

$$
H(x, y)=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right] .
$$

In our case, get $H(x, y)=\left[\begin{array}{cc}\left(2-4 x+x^{2}+y^{2}\right) e^{-x} & -2 y e^{-x} \\ -2 y e^{-x} & 2 e^{-x}\end{array}\right]$.
Step 2 Compute the Hessian matrix at each of the critical points.

$$
H(0,0)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

and

$$
H(2,0)=\left[\begin{array}{cc}
-2 e^{-2} & 0 \\
0 & 2 e^{-2}
\end{array}\right] .
$$

Step 4 Apply the second derivative test for each critical point.

- For $(0,0)$: $\operatorname{det} H(0,0)=4>0$ and $f_{x x}=2>0$, so $(0,0)$ is a local minimum.
- For $(2,0): \operatorname{det} H(2,0)=-4 e^{-4}<0$, so $(2,0)$ is a saddle point.

NOTE: the global min/max of a function is not necessarily at a critical point! Need to check boundary / infinity.

In Example 2 above, to find the global min/max of f in the region $0 \leq x, y \leq 1$, w need to check what happens on the boundary. Namely we have to look at $f(0, y), f(1, y), f(x, 0)$ and $f(x, 1)$. We have to compute the min/max for these 4 functions and compare to the value at critical points inside the square (if any).

MATH 20C Lecture 18 - Friday, November 5, 2010

Least squares method

Set up problem: given experimental data $\left(x_{i}, y_{i}\right)(i=1, \ldots, n)$, want to find a best-fit line $y=a x+b$ (the unknowns here are a, b, not $x, y!$) Deviations: $y_{i}-\left(a x_{i}+b\right)$; want to minimize the total square deviation $D(a, b)=\sum_{i=1}^{n}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$.
$\frac{\partial D}{\partial a}=0$ and $\frac{\partial D}{\partial b}=0$ leads to a 2×2 linear system for a and b

$$
\begin{aligned}
\left(\sum_{i=1}^{n} x_{i}^{2}\right) a+\left(\sum_{i=1}^{n} x_{i}\right) b & =\sum_{i=1}^{n} x_{i} y_{i} \\
\left(\sum_{i=1}^{n} x_{i}\right) a+n b & =\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

The least-squares setup also works in other cases: e.g. exponential laws $y=c e^{a x}$ (taking logarithms: $\ln y=a x+\ln c$, so setting $b=\ln c$ we reduce to linear case); or quadratic laws $y=a x^{2}+b x+c$ (minimizing total square deviation leads to a 3×3 linear system for a, b, c). Example: Moores Law (number of transistors on a computer chip increases exponentially with time): showed picture.

Lagrange multipliers

Problem: min/max of a function $f(x, y, z)$ when variables are constrained by an equation $g(x, y, z)=$ c.

Example: find point of hyperbola $x y=5$ closest to origin. I.e. minimize $\sqrt{x^{2}+y^{2}}$, or better $f(x, y)=x^{2}+y^{2}$, subject to $g(x, y)=x y=5$. Drawn picture.

Observe on picture: at the minimum, the level curves are tangent to each other, so the normal vectors ∇f and ∇g are parallel.

So: there exists λ ("multiplier") such that $\nabla f=\lambda \nabla g$.
We replace the constrained min/max problem in 2 variables with 3 equations involving 3 variables x, y, λ :

$$
\left\{\begin{array} { l }
{ f _ { x } = \lambda g _ { x } } \\
{ f _ { y } = \lambda g _ { y } } \\
{ g (x , y) = c }
\end{array} \quad \text { i.e. in our case } \quad \left\{\begin{array}{l}
2 x=\lambda y \\
2 y=\lambda x \\
x y=5 .
\end{array}\right.\right.
$$

Substituting the second equation in the first we get $x\left(\lambda^{2} / 4-1\right)=0$, so either $x=0$ or $\lambda= \pm 2$. But if $x=0$, then $y=0$ and the constraint $x y=5$ is not satisfied. Hence we are forced to have $\lambda= \pm 2$. No solutions for $\lambda=-2$, but $\lambda=2$ gives $(\sqrt{5}, \sqrt{5})$ and $(-\sqrt{5},-\sqrt{5})$.
Warning: method doesn't say whether we have a min or a max, and second derivative test DOES NOT apply with constrained variables. Need to answer using geometric argument or by comparing values of f.

