MATH 20C Lecture 19 - Monday, November 8, 2010

Lagrange multipliers continued

Example: Find the min/max of $f(x, y, z)=3 x+y+4 z$ on the surface $x^{2}+3 y^{2}+6 z^{2}=1$.
Step 1 Compute the two gradients ∇f and ∇g.
$\nabla f=\langle 3,1,4\rangle \quad \nabla g=\langle 2 x, 6 y, 12 z\rangle$
Step 2 Write down the Lagrange multiplier equations $\nabla f=\lambda \nabla g$ and the constraint $g=c$.

$$
\begin{array}{cc}
\nabla f=\lambda \nabla g \quad \Longrightarrow \quad\left\{\begin{array}{l}
3=2 \lambda x \\
1=6 \lambda y \\
4=12 \lambda z
\end{array}\right. \\
g=c \quad \Longrightarrow \quad x^{2}+3 y^{2}+6 z^{2}=1
\end{array}
$$

Step 3 Solve the system, i.e. find points (x, y, z) that satisfy the equations from Step 2.
WARNING! There is no general method to solve these equations. In each case, you have to think about them and come up with a method. Sometimes it will be impossible to solve without using a computer. (Not on the exam though!)
In our example, note that λ cannot be 0 . From the first three equations get $x=\frac{3}{2 \lambda}, y=$ $\frac{1}{6 \lambda}, z=\frac{1}{3 \lambda}$. Substitute these values in the constraint equation and get $\lambda^{2}=3$, so $\lambda= \pm \sqrt{3}$. Therefore there are two points $\left(\frac{\sqrt{3}}{2}, \frac{1}{6 \sqrt{3}}, \frac{1}{3 \sqrt{3}}\right)$ and $\left(-\frac{\sqrt{3}}{2},-\frac{1}{6 \sqrt{3}},-\frac{1}{3 \sqrt{3}}\right)$ on the given surface at which the gradients of f and g are parallel.

Step 4 Plug the points you found into f and compare values.
WARNING! There is no general method to tell you if the points you got are local $\min / \mathrm{max} / \mathrm{saddle}$. The only way is to plug in points on the surface/curve $g=c$ and compare the values of f.
However, sometimes we can find some geometric reason for which the function f would be forced to have a min or a max on the surface/curve $g=c$. For instance, if $g=c$ is closed, then f will have both min and max along $g=c$.
This happens to be the case for us, since $x^{2}+3 y^{2}+6 z^{2}=1$ describes the shell of an ovoid in 3 -space.

$$
\begin{gathered}
f\left(\frac{\sqrt{3}}{2}, \frac{1}{6 \sqrt{3}}, \frac{1}{3 \sqrt{3}}\right)=3 \frac{\sqrt{3}}{2}+\frac{1}{6 \sqrt{3}}+4 \frac{1}{3 \sqrt{3}}=\frac{2}{\sqrt{3}} . \\
f\left(-\frac{\sqrt{3}}{2},-\frac{1}{6 \sqrt{3}},-\frac{1}{3 \sqrt{3}}\right)=-3 \frac{\sqrt{3}}{2}-\frac{1}{6 \sqrt{3}}-4 \frac{1}{3 \sqrt{3}}=-\frac{2}{\sqrt{3}} .
\end{gathered}
$$

The first point is a max, the second is a min.

Partial differential equations

These are equations involving partial derivatives of an unknown function. They are very important in physics. E.g., heat equation

$$
\frac{\partial f}{\partial t}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

describes the evolution of temperature over time.

Review topics

- Functions of several variables, contour plots.
- Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.
- higher order partial derivatives
- chain rule, change of variables, implicit differentiation
- to be continued

MATH 20C Lecture 20 - Wednesday, November 10, 2010

Review topics continued: optimization

- Min/max problems: critical points, second derivative test, checking boundary. (least squares won't be on the exam)
- Min/max for non-independent variables: Lagrange multipliers

Went through problems 7-9 and 1 from the suggested practice problems in the study guide. Solutions to all the practice problems are posted online.

MATH 20C Lecture 21 - Friday, November 12, 2010: second midterm

