## MATH 20C Lectures 25 \& 26

## Monday, November 22 \& Wednesday, November 242010

## taught by J. Lebl

Here is a list of the examples explained by Prof. Lebl. I am not going to write down the solutions, since I think it would be a good exercise for everyone to go through them and compute on their own. The one exception is Example 3, because this is a novel way of using double integrals. The multivariable techniques are used to compute a single variable integral which could not be computed with only single variable calculus knowledge. For an exposition of polar and cylindrical coordinates, see the notes for week 10 .

Example 1 Integrate $x y+y^{2}$ over the region in plane described in polar coordinates by $1 \leq r \leq 2$, $-\pi / 2 \leq \theta \leq \pi / 2$.
This is a half annulus. In polar coordinates, $x y+y^{2}=r^{2} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta$.
Example $2 \iint_{D} x y d A$, where $D: x \geq 1, y \geq 0,(x-1)^{2}+y^{2} \leq 1$.
Example $3 \int_{-\infty}^{\infty} e^{-x^{2}} d x$.
Denote by $A$ our integral. It will be non-negative since the exponential is positive. Then

$$
A^{2}=A \cdot A=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}-y^{2}} d x d y
$$

Changing to polar coordinates, this gives $A^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} r e^{-r^{2}} d r$.
The inner integral is equal, via the change of variables $u=r^{2}$, to

$$
\frac{1}{2} \int_{0}^{\infty} e^{-u} d u=\frac{1}{2}
$$

Hence $A^{2}=\pi$, and $A=\sqrt{\pi}$.
Example 4 Let $W: x^{2}+y^{2} \leq 1,0 \leq z \leq 1+x^{2}+y^{2}$.

$$
\iiint_{W}\left(x^{2}+y^{2}-z\right) d V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1+r^{2}}\left(r^{2}-z\right) r d z d r d \theta=\ldots
$$

Example 5 The volume of the unit ball $\mathbb{B}$ in $\mathbb{R}^{3}$ can be computed using cylindrical coordinates $(4 \pi / 3)$.

