
MATH 20E – Final Exam: solutions to practice problems

Alina Bucur

Problem 2 (a) ∇f = (y − 4x3, x), so at (1, 1) it becomes (3, 1).

(b) ∆w ≈ −3∆x + ∆y.

Problem 3
∂w

∂x
= fuux + fvvx = yfu +

1
y
fv and

∂w

∂y
= fuuy + fvvy = xfu −

x

y2
fv.

Problem 4 (a) ∇f = (2xy2 − 1, 2x2y), so at (2, 1) it becomes (3, 8).

(b) z − 2 = 3(x− 2) + 8(y − 1) or 3x + 8y − z = 12.

(c) ∆x = 1.9−2 = −0.1 and ∆y = 1.1−1 = 0.1; so f(1.9, 1.1)−f(2, 1) ≈ 3∆x+8∆y = −0.3+0.8 =
0.5; since f(2, 1) = 2, we obtain f(1.9, 1.1) ≈ 2.5

Problem 5 (a) wx = wuux + wvvx = − y

x2
wu + 2xwv and wy = wuuy + wvvy =

1
x

wu + 2ywv.

(b) xwx + ywy = x
(
− y

x2
wu + 2xwv

)
+ y

(
1
x

wu + 2ywv

)
=

(
−y

x
+

y

x

)
wu + (2x2 + 2y2)wv = 2vwv

(c) xwx + ywy = 2vwv = 2v(5v4) = 10v5.

Problem 6 vol(R) =
∫∫

R

dV

The equation of the sphere is x2 + y2 + (z − 2)2 = 16.

The shadow of R on the xy-plane is given by the quarter of the ellipse x2

4 + y2

9 = 1 that sits in the

first quadrant x, y ≥ 0. So 0 ≤ x ≤ 2 and for each x we have 0 ≤ y ≤ 3
√

1− x2

4 . For each point (x, y)

in the shadow of R, have 0 ≤ z ≤ 2 +
√

16− x2 − y2. Hence

vol(R) =
∫ 2

0

∫ 3

q
1− x2

4

0

∫ 2+
√

16−x2−y2

0

dz dy dx.

Problem 7 The two surfaces are paraboloids. The shadow of the region on the xy-plane is determined by
the intersection of these two paraboloids. In other words, we need z = 4 − x2 − y2 to sit underneath
z = 10− 4x2 − 4y2, i.e. 4− x2 − y2 ≤ 10− 4x2 − 4y2. That is, we need 3x2 + 3y2 ≤ 6 ⇔ x2 + y2 ≤ 2.
So,

vol =
∫∫

x2+y2≤2

∫ 10−4x2−4y2

4−x2−y2
dV.

From here it’s best to switch to cylindrical coordinates, so
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vol =
∫ 2π

0

∫ √
2

0

∫ 10−4r2

4−r2
r dz dr dθ =

∫ 2π

0

∫ √
2

0

r(6− 3r2) dr dθ =
∫ 2π

0

[
3r2 − 3

4
r4

]r=
√

2

r=0

dθ = 6π.

Problem 8 The region R is the triangle formed by the lines y = x
√

3, y = x and x = 2.
The angle made by the line y = x

√
3 with the positive x-axis is π/3, while the angle made by the line

y = x with the positive x-axis is π/4. The line x = 2 crosses the two lines at (2, 2
√

3) and (2, 2). The
line x = 2 is given in polar coordinates by r cos θ = 2, hence r = 2

cos θ .

∫ 2

0

∫ x
√

3

x

x dy dx =
∫ π/3

π/4

∫ 2/ cos θ

0

r2 cos θ dr dθ =
8
3

∫ π/3

π/4

1
cos2 θ

=
8
3

[
tan θ

]θ=π/3

θ=π/4
=

8
3
(
√

3− 1).

Problem 9 (a) The region of integration is the triangle made by the lines y = x, y = 2x and x = 1. It has
vertices (0, 0), (1, 1) and (1, 2).

(b) For 0 ≤ y ≤ 1, have y/2 ≤ x ≤ y and for 1 ≤ y ≤ 2, have y/2 ≤ x ≤ 1. So∫ 1

0

∫ 2x

x

dydx =
∫ 1

0

∫ y

y/2

dxdy +
∫ 2

1

∫ 1

y/2

dxdy.

Problem 10 The ball of radius 5 is the solid B given by x2 + y2 + z2 ≤ 25. Its shadow on the xy-plane is
the disk of radius 5. In rectangular coordinates

vol(B) =
∫∫∫

B

dV =
∫ 5

−5

∫ √
25−x2

−
√

25−x2

∫ √
25−x2−y2

−
√

25−x2−y2
dzdydx.

Using the Jacobian of the spherical coordinate change, we have dzdydx = ρ2 sinφdρdφdθ. The ball of
radius 5 has equation ρ ≤ 5. Thus θ takes any value in [0, 2π) and φ takes any value in [0, π] and we
have

vol(B) =
∫ 2π

0

∫ π

0

∫ 5

0

ρ2 sinφdρdφdθ =
∫ 2π

0

∫ π

0

[
ρ3

3
sinφ

]ρ=5

ρ=0

dφdθ =
53

3

∫ 2π

0

[− cos φ]φ=π
φ=0 dθ

This equals

2 · 53

3
(2π) =

500π

3
.

Problem 11 The region is inside the the unit circle x2+y2 = 1, outside x2+y2 = 2y ⇐⇒ x2+(y−1)2 = 1
the circle of radius 1 centered at (0, 1) and with x, y ≥ 0. In the uv-plane this becomes the triangle T
with sides u = 1, v = 0 and u = v. Its vertices are at (0, 0), (1, 0) and (1, 1). We need to compute the
Jacobian of the transformation

J =
∂(u, v)
∂(x, y)

=
∣∣∣∣ux uy

vx vy

∣∣∣∣ =
∣∣∣∣2x 2y
2x 2y − 2

∣∣∣∣ = −4x.

We have to take absolute value, and since x ≥ 0, we get dudv = 4xdxdy. Therefore

∫ 1/2

0

∫ √
1−y2

√
2y−y2

xeydxdy =
1
4

∫∫
T

eydudv =
1
4

∫ 1

0

∫ u

0

eu/2−v/2dvdu =
1
4

∫ 1

0

[
−2eu/2−v/2

]v=u

v=0
du

=
1
4

∫ 1

0

(2eu/2 − 2)du =
[
eu/2 − u

2

]u=1

u=0
=
√

e− 3
2
.
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Problem 12 (a)
∂(u, v)
∂(x, y)

=
∣∣∣∣ux uy

vx vy

∣∣∣∣ =
∣∣∣∣2x/y −x2/y2

y x

∣∣∣∣ =
3x2

y
.

Therefore

dudv =
3x2

y
dxdy = 3udxdy =⇒ dxdy =

1
3u

dudv.

(b)
∫ 5

1

∫ 4

2

1
3u

dvdu =
2
3

∫ 5

1

1
u

du =
2
3

ln 5.

Problem 14 Need to check that ~F (~c(t)) = ~c′(t).

(a) yes: ~F (~c(t)) = ~F (t3,
√

t,−t,− log t) =
(

3t2,
1

2
√

t
,

t2

−t3
,−1

t

)
= ~c′(t).

(b) yes: ~F (~c(t)) = (− sin t, cos t) = ~c′(t).

(c) no: ~F (~c(t)) = (− cos t, sin t) 6= ~c′(t) = (cos t,− sin t).

(d) no: ~F (x, y) = (− sin t, t) 6= ~c′(t) = (1, cos t).

Problem 15 Want to have ~F (~c(t)) = ~c′(t), i.e. (e2t+2te2t, b, 2e2t) = (ateat+eat, 1, 2e2t). Hence a = 2, b = 1.

Problem 16 Need to see if curl ~F = Nx −My is 0.

(a) M = x,N = −y so My = 0, Nx = 0. Since they are equal, this is a gradient field. Potential is
f(x, y) such that ~F = ∇f, i.e. fx = x, fy = −y. Therefore f(x, y) = x2

2 + c(y) and c′(y) = −y. So
f(x, y) = x2−y2

2 + const.

(b) M = y, N = y2 so My = 1, Nx = 0. This is not a gradient field.

(c) M = 2xy,N = x2 + y2 so My = 2x,Nx = 2x. Hence ~F is a gradient field. Want to find f(x, y)
such that ~F = ∇f, i.e. fx = 2xy, fy = x2 +y2. From the first relation we get f(x, y) = x2y + c(y).
Plugging into second, get x2 + c′(y) = x2 + y2 so c(y) = y3/3 + const. Thus f(x, y) = x2y + y3

3 +
const.

Problem 17 ~F = (ax2y + y3 + 1)̂ı + (2x3 + bxy2 + 2)̂

(a) Want ∂
∂y (ax2y + y3 + 1) = ∂

∂x (2x3 + bxy2 + 2), i.e. ax2 + 3y2 = 6x2 + by2. Thus a = 6, b = 3.

(b) ~F = (6x2y + y3 + 1)̂ı + (2x3 + 3xy2 + 2)̂.
We will integrate on the line segments from (0, 0) to (x1, 0) and then to (x1, y1). On the first
segment: x = t, y = 0, 0 ≤ t ≤ x1, dx = dt, dy = 0 so we get

∫ x1

0
1dt = x1. On the second segment:

x = x1, y = t, 0 ≤ t ≤ y1, dx = 0, dy = dt so we get
∫ y1

0
(2x3

1 + 3x1t
2 + 2)dt = 2x3

1y1 + x1y
3
1 + 2y1.

Adding them up we get 2x3
1y1 + x1y

3
1 + 2y1 + x1, so the potential is

f(x, y) = 2x3y + xy3 + x + 2y.

Check: ∇f = (6x2y + y3 + 1, 2x3 + 3xy2 + 2) = ~F .

(c) C starts at (1, 0) and ends at (−eπ, 0), so FTC tells us that∫
C

~F · d~r = f(−eπ, 0)− f(1, 0) = −e−π − 1.

Problem 18 (a) Nx = −12y = My, hence ~F is conservative.

(b) fx = 3x2 − 6y2 =⇒ f = x3 − 6xy2 + c(y) =⇒ fy = −12xy + c′(y) = −12xy + 4y. So
c′(y) = 4y =⇒ c(y) = 2y2+ const. In conclusion,

f = x3 − 6xy2 + 2y2(+ constant).
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(c) C starts at (1, 0) and ends at (1, 1), so∫
C

~F · d~r = f(1, 1)− f(1, 0) = (1− 6 + 2)− 1 = −4.

Problem 19
∫

C

yx3dx + y2dy =
∫ 1

0

x2x3dx +
(
x2

)2
(2xdx) =

∫ 1

0

3x5dx =
1
2
.

Problem 20 (a) The parametrization of the unit circle C is x = cos t, y = sin t, 0 ≤ t ≤ 2π. Then
dx = − sin tdt, dy = cos tdt and

work =
∫

C

Mdx + Ndy =
∫ 2π

0

(5 cos t + 3 sin t)(− sin tdt) + (1 + cos(sin t))(cos tdt).

Hence

work =
∫ 2π

0

−(5 cos t + 3 sin t) sin t + (1 + cos(sin t)) cos t dt.

(b) Let R be the unit disk inside C. By Green’s theorem,∫
C

~F · d~r =
∫∫

R

(Nx −My)dA =
∫∫

R

(0− 3)dA = −3area(R) = −3π.

Problem 21 (a) Since we rotate around the y-axis, we need to write x as a function of y. Have x = y2, 0 ≤
y ≤ 1. The area of the surface of revolution is then∫ 1

0

|y|
√

1 + (2y)2dy =
∫ 1

0

y
√

1 + (2y)2dy.

Taking u = 1 + 4y2, we have du = 8ydy so∫ 1

0

y
√

1 + 4y2dy =
∫ 5

1

√
u

du

8
=

1
8

[
2
3
u3/2

]u=5

u=1

=
1
12

(5
√

5− 1).

(b) Three of the faces of the tetrahedron are right triangles with sides equal to 1 and hypothenuse√
2. The are of each of them is 1/2, so their total area is 3/2. The fourth face is an equilateral

triangle with all sides equal to
√

2. The area of such a triangle is given by
√

2
√

2 sinπ/3
2

=
√

3
2

.

The total surface area is therefore 3/2 +
√

3/2.

(c) area =
∫∫

S
dS =

∫∫
u2+v2≤4

‖(xu, yu, zu)× (xv, yv, zv)‖dudv.

(xu, yu, zu)× (xv, yv, zv) = (1, 1, v)× (−1, 1, u) = (u− v,−u− v, 2)

and its length is
√

(u− v)2 + (u + v)2 + 4 =
√

2u2 + 2v2 + 4. The are is therefore∫∫
u2+v2≤4

√
2(u2 + v2) + 4 =

∫ 2

0

∫ 2π

0

√
2r2 + 4rdθdr = 2π

∫ 2

0

√
2r2 + 4rdr

by switching to polar coordinates. Next we can set w = 2r2 + 4 and get

2π

∫ 12

4

w1/2 dw

4
=

π

3

[
w3/2

]w=12

w=4
=

8π

3
(3
√

3− 1).
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Problem 22 see book

Problem 23 (a) normal vector is the gradient, i.e. (2x − y6 sin(xy), 5y4 cos(xy) − xy5 sin(xy),−6z5). At
(9, 0, 3) it becomes (18, 0,−1458). The tangent plane is therefore

18(x− 9)− 1458(z − 3) = 0.

(b) f(−1, 1) = e2 and fx = 4xye2x2y + cos(x + y), fy = 2x2e2x2y + cos(x + y). At x = −1, y = 1 the
partial derivatives are fx = −4e2 + 1, fy = 2e2 + 1. The tangent plane is therefore

z − e2 = (1− 4e2)(x + 1) + (2e2 + 1)(y − 1).

(c) The cylinder S is parametrized by x = 5 cos u, y = v, z = 5 sin u. A normal vector is (xu, yu, zu)×
(xv, yv, zv) = (−5 sinu, 0, 5 cos u)× (0, 1, 0). At P = (3, 19, 4) we have v = 19, sinu = 4/5, cos u =
3/5. So the normal vector becomes (−4, 0, 3)× (0, 1, 0) = −3̂ı− 4k̂. The tangent plane is

−3(x− 3)− 4(z − 4) = 0 ⇐⇒ 3x + 4z = 25.

Problem 24 (a) This is similar to Example 2, page 524.

area =
1
2

∫
C

xdy − ydx

where C is the curve x2/5 + y2/5 = 322/5 oriented counterclockwise. We parametrize C : x =
32 cos5 ty = 32 sin5 t, 0 ≤ t ≤ 2π. Then dx = −160 cos4 t sin tdt and dy = 160 sin4 t cos tdt. Thus

area =
1
2

∫ 2π

0

160 · 32(sin4 t cos6 t + sin6 t cos4 t)dt = 2560
∫ 2π

0

sin4 t cos4 tdt

= 160
∫ 2π

0

sin4(2t)dt = 10
∫ 2π

0

(1− cos(4t))2dt = 10
∫ 2π

0

1 + cos2(4t)− 2 cos(4t)dt

= 20π + 5
∫ 2π

0

(1− sin 8t)dt− [10 sin(4t)]t=2π
t=0 = 30π.

(b) This is problem 19, page 530.

Problem 25 (a) n̂1 = −̂, n̂2 = ı̂, n̂3 = ̂, n̂4 = −ı̂

� 
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� 

� �� 

� 

� �� 

18.02 Practice Exam 3 B – Solutions


� (1,2) 
y = 2x 

x = 1
 

 � (1,1) b) 

� 1 � y 

dxdy + 
� 2 � 1 

dxdy.1. a) 
 � 0 y/2 1 y/2 


�y = x (the first integral corresponds to the bottom half 0 � y � 1, the second 

� � integral to the top half 1 � y � 2.) 

r sin � 
2. a) �dA = rdrd� = sin �drd�.

2r
�� � � � 3 � � 

M = �dA = sin � drd� = 2 sin �d� = − 2 cos � = 4.
0 

R 0 1 0 

1 
�� 

1 
� � � 3 

b) x̄ = x�dA = r cos � sin �drd� 
M R 4 0 1 

The reason why one knows that x̄ = 0 without computation is that the region and the density 
are symmetric with respect to the y-axis (�(x, y) = �(−x, y)). 

3. a) Nx = −12y = My, hence F is conservative. 

b) fx = 3x2 − 6y2 � f = x3 − 6y2x + c(y) � fy = −12xy + c�(y) = −12xy + 4y. So c�(y) = 4y, 
thus c(y) = 2y2 (+ constant). In conclusion 

f = x 3 
− 6xy 2 + 2y 2 (+ constant). 

c) The curve C starts at (1, 0) and ends at (1, 1), therefore 

F · dr = f(1, 1) − f(1, 0) = (1 − 6 + 2) − 1 = −4. 
C 

4. a) The parametrization of the circle C is x = cos t, y = sin t, for 0 � t < 2�; then dx = 
− sin tdt, dy = cos tdt and 

� 2� 

W = (5 cos t + 3 sin t)(− sin t)dt + (1 + cos(sin t)) cos tdt. 
0 

b) Let R be the unit disc inside C; 
� �� �� 

F · dr = (Nx − My)dA = (0 − 3)dA = −3 area(R) = −3�. 
C R R 

C3 
5. a) (0, 4) •�� •�� (1, 4) F · n̂ ds = div F dxdy 

C 
�� R 

�� 
= (y +cos x cos y − cos x cos y)dxdy = ydxdy

C4 C2 R R 
� 4 � 1 � 4


= ydxdy = ydy = [y 2/2]40 = 8.

(0, 0) •�� •�� (1, 0) 0 0 0


C1 

(b) The flux out of R is the flux across C = C1 + C2 + C3 + C4 and is given by

4∑
i=1

∫
Ci

~F · n̂ids =
∫∫

R

div ~FdA
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and div ~F = y + cos x cos y − cos x cos y = y. So∫∫
R

div ~FdA =
∫ 4

0

∫ 1

0

ydxdy =
∫ 4

0

ydy = 8.

(c) On C4, x = 0, so ~F = − sin y̂, whereas n̂4 = −ı̂. Hence ~F ⊥ n̂4 and ~F · n̂4 = 0. Therefore the
flux of ~F through C4 equals 0. Thus

3∑
i=1

∫
Ci

=
4∑

i=1

∫
Ci

~F · n̂ids = total flux out of R.

Problem 26 This is Example 6, page 495, in the textbook.

Problem 27 This is Example 4, page 492, in the textbook.

Problem 28 (a) curl ~F = Nx −My = sin(x− y)− 3x,div ~F = Mx + Ny = 3y + sin(x− y).

(b) curl ~F = Nx −My =
y

1 + x2y2
− 2ex+2y,div ~F = Mx + Ny = ex+2y +

x

1 + x2y2
.

Problem 29 (a) ∇× ~F = (0,−yexy, 0),div F = Px + Qy + Rz = 1.

(b) ∇× ~F =
(

0, 0,
y

1 + x2y2
− 2ex+2y

)
,div F = Px + Qy + Rz = ex+2y +

x

1 + x2y2
.

(c) ∇× ~F =
(

0,−2xy,
x√

1 + x2
+ 2xz

)
,div F = Px + Qy + Rz = −2yz +

1
cos2 z

.

Problem 30 (a) S is the graph of z = f(x, y) = 1 − x2 − y2, and the normal points upwards, so n̂dS =
(−fx,−fy, 1)dA = (2x, 2y, 1)dA.

Therefore∫∫
S

~F ·n̂dS =
∫∫

shadow

(x, y, 2(1−z))·(2x, 2y, 1)dA =
∫∫

shadow

2x2+2y2+2(1−z)dA =
∫∫

shadow

4x2+4y2dA

since z = 1− x2 − y2 =⇒ 1− z = x2 + y2.

Shadow = unit disk x2 + y2 ≤ 1; switching to polar coordinates, we have∫∫
S

~F · n̂dS =
∫ 2π

0

∫ 1

0

4r2rdrdθ = 2π.

(b) Let R = unit disk in the xy-plane, with normal vector pointing down (n̂ = −k̂). Then∫∫
R

~F · n̂dS =
∫∫

R

(x, y, 2) · (−k̂)dS = −
∫∫

R

−2dS = −2area(R) = −2π.

By the divergence theorem, ∫∫
S+R

~F · n̂dS =
∫∫

W

(div ~F )dV = 0,

since div ~F = 1 + 1− 2 = 0. Therefore
∫∫

S
= −

∫∫
R

= 2π.

Problem 31 div ~F = 0, and so ∫∫
S

~F · n̂dS =
∫∫∫

W

div ~FdV = 0.
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Problem 32 (a) ∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

−2xz 0 y2

∣∣∣∣∣∣ = (2y,−2x, 0).

(b) On the unit sphere, n̂ = (x, y, z) so (∇× ~F ) · n̂ = 2yx−2xy = 0. Therefore
∫∫

R
(∇× ~F ) · n̂dS = 0.

(c) By Stokes’ Theorem
∫

C
~F · d~r =

∫∫
R
(∇× ~F ) · n̂dS where R is the region delimited by C on the

unit sphere. Using the result of (b), we get
∫

C
~F · d~r =

∫∫
R
(∇× ~F ) · n̂dS = 0.

Problem 33 (a) z = 1 and x2 + y2 + z2 = 1, so x2 + y2 = 1. Therefore C is the circle of radius 1 in the
z = 1 plane. Compatible orientation: counterclockwise.
Parametrization: x = cos t, y = sin t, z = 1 Therefore dx = − sin tdt, dy = cos tdt, dz = 0.

I =
∫

C

xzdx + ydy + ydz =
∫ 2π

0

(− cos t sin t + cos t sin t)dt = 0.

(b)

∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

xz y y

∣∣∣∣∣∣ = ı̂ + x̂.

(c) By Stokes’ Theorem ∫
C

~F · d~r =
∫∫

S

(∇× ~F ) · n̂dS.

n̂ is the normal pointing upwards, so n̂ = (x,y,z)√
2

on the upper hemisphere of radius
√

2. Thus

I =
∫

C

~F · d~r =
∫∫

S

(1, x, 0) · (x, y, z)√
2

dS =
∫∫

S

x + xy√
2

dS.

Problem 34 (a) By taking N = 0 in Green’s theorem, we get
∫

C
Mdx =

∫∫
R
−MydA.

(b) We want M(x, y) such that −My = (x + y)2. Use M = − 1
3 (x + y)3.

Problem 35 The surface is the graph of the function f(x, y) = xy with x, y in the unit disk. The flux is
upward, so

n̂dS = +(−fx,−fy, 1)dxdy = (−y,−x, 1)dxdy.

Hence ∫∫
S

~F · n̂dS =
∫∫

x2+y2<1

(y, x, z) · (−y,−x, 1)dxdy =
∫∫

x2+y2<1

(−y2 − x2 + xy)dxdy

where we substituted z = xy. Using polar coordinates we get

∫∫
S

~F · n̂dS =
∫ 2π

0

∫ 1

0

(−r2 + r2 cos θ sin θ)rdrdθ.

• inner integral:
∫ 1

0

(−r2 + r2 cos θ sin θ)rdr =
1
4
(cos θ sin θ − 1).

• outer integral:
∫ 2π

0

1
4
(cos θ sin θ − 1)dθ =

1
4

[
sin2 θ

2
− θ

]θ=2π

θ=0

= −π

2
.
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Problem 36 (a) Consider the figure

We have n̂ = 1
2 (x, y, z), hence ~F · n̂ = (y,−x, z) · (x,y,z)

2 = z2

2 . For the part of the sphere of
radius 2 we use the parametrization x = 2 sinφ cos θ, y = 2 sinφ sin θ, z = 2 cos φ. Then dS =
22 sinφdφdθ = 4sinφdφdθ.

Since we are outside the cylinder, the bounds are 0 ≤ θ ≤ 2π and π/6 ≤ φ ≤ 5π/6. (see figure)
Thus the flux is given by∫ 2π

0

∫ 5π/6

π/6

4 cos2 φ

2
4 sinφdφdθ = 8

∫ 2π

0

∫ 5π/6

π/6

cos2 φ sinφdφdθ.

• inner integral:
∫ 5π/6

π/6

cos2 φ sinφdφ =
[
−cos3 φ

3

]φ=5π/6

φ=π/6

=
√

3
4

.

• outer integral: 8
∫ 2π

0

√
3

4
dθ = 4π

√
3.

(b) On the cylinder n̂ = ±(x, y, 0) and so ~F · n̂ = 0. Therefore the flux is 0.

(c) div ~F = 1, hence

vol(W ) =
∫∫∫

W

1dV =
∫∫∫

W

(div ~F )dV =
∫∫

S

~F · n̂dS +
∫∫

cylinder

~F · n̂dS = 4π
√

3+0 = 4π
√

3.

Problem 37 (a)

∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

exyz exz + 2yz exy + y2 + 1

∣∣∣∣∣∣ = (ex +2y−ex−2y)̂ı−(exy−exy)̂+(exz−exz)k̂ = 0.

(b) On the segment from (0, 0, 0) to (x1, 0, 0) : x = t, y = 0, z = 0, 0 ≤ t ≤ x1, dx = dt, dy = 0 = dz so
we get

∫ x1

0
0dt = 0.

On the segment from (x1, 0, 0) to (x1, y1, 0) : x = x1, y = t, z = 0, 0 ≤ t ≤ y1, dx = 0, dy = dt, dz =
0 so we get

∫ y1

0
0dt = 0.

On the segment from (x1, y1, 0) to (x1, y1, z1) : x = x1, y = y1, z = t, 0 ≤ t ≤ z1, dx = 0 = dy, dz =
dt so we get

∫ z1

0
(ex1y + y2

1 + 1)dt = (ex1y + y2
1 + 1)z1.

Therefore
f(x, y, z) = exyz + y2z + z.

Check: ∇f = (fx, fy, fz) = (exyz, exz + 2yz, exy + y2 + 1) = ~F .
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(c)

∇× ~G =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

y x y

∣∣∣∣∣∣ = ı̂ 6= 0.
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