MATH 20E - Final Exam: solutions to practice problems

Alina Bucur

Problem 2 (a) $\nabla f=\left(y-4 x^{3}, x\right)$, so at $(1,1)$ it becomes $(3,1)$.
(b) $\Delta w \approx-3 \Delta x+\Delta y$.

Problem $3 \frac{\partial w}{\partial x}=f_{u} u_{x}+f_{v} v_{x}=y f_{u}+\frac{1}{y} f_{v}$ and $\frac{\partial w}{\partial y}=f_{u} u_{y}+f_{v} v_{y}=x f_{u}-\frac{x}{y^{2}} f_{v}$.
Problem 4 (a) $\nabla f=\left(2 x y^{2}-1,2 x^{2} y\right)$, so at $(2,1)$ it becomes $(3,8)$.
(b) $z-2=3(x-2)+8(y-1)$ or $3 x+8 y-z=12$.
(c) $\Delta x=1.9-2=-0.1$ and $\Delta y=1.1-1=0.1$; so $f(1.9,1.1)-f(2,1) \approx 3 \Delta x+8 \Delta y=-0.3+0.8=$ 0.5 ; since $f(2,1)=2$, we obtain $f(1.9,1.1) \approx 2.5$

Problem 5 (a) $w_{x}=w_{u} u_{x}+w_{v} v_{x}=-\frac{y}{x^{2}} w_{u}+2 x w_{v}$ and $w_{y}=w_{u} u_{y}+w_{v} v_{y}=\frac{1}{x} w_{u}+2 y w_{v}$.
(b) $x w_{x}+y w_{y}=x\left(-\frac{y}{x^{2}} w_{u}+2 x w_{v}\right)+y\left(\frac{1}{x} w_{u}+2 y w_{v}\right)=\left(-\frac{y}{x}+\frac{y}{x}\right) w_{u}+\left(2 x^{2}+2 y^{2}\right) w_{v}=2 v w_{v}$
(c) $x w_{x}+y w_{y}=2 v w_{v}=2 v\left(5 v^{4}\right)=10 v^{5}$.

Problem $6 \operatorname{vol}(R)=\iint_{R} d V$
The equation of the sphere is $x^{2}+y^{2}+(z-2)^{2}=16$.
The shadow of R on the $x y$-plane is given by the quarter of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ that sits in the first quadrant $x, y \geq 0$. So $0 \leq x \leq 2$ and for each x we have $0 \leq y \leq 3 \sqrt{1-\frac{x^{2}}{4}}$. For each point (x, y) in the shadow of R, have $0 \leq z \leq 2+\sqrt{16-x^{2}-y^{2}}$. Hence

$$
\operatorname{vol}(R)=\int_{0}^{2} \int_{0}^{3 \sqrt{1-\frac{x^{2}}{4}}} \int_{0}^{2+\sqrt{16-x^{2}-y^{2}}} d z d y d x
$$

Problem 7 The two surfaces are paraboloids. The shadow of the region on the $x y$-plane is determined by the intersection of these two paraboloids. In other words, we need $z=4-x^{2}-y^{2}$ to sit underneath $z=10-4 x^{2}-4 y^{2}$, i.e. $4-x^{2}-y^{2} \leq 10-4 x^{2}-4 y^{2}$. That is, we need $3 x^{2}+3 y^{2} \leq 6 \Leftrightarrow x^{2}+y^{2} \leq 2$. So,

$$
\mathrm{vol}=\iint_{x^{2}+y^{2} \leq 2} \int_{4-x^{2}-y^{2}}^{10-4 x^{2}-4 y^{2}} d V
$$

From here it's best to switch to cylindrical coordinates, so

$$
\mathrm{vol}=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{4-r^{2}}^{10-4 r^{2}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} r\left(6-3 r^{2}\right) d r d \theta=\int_{0}^{2 \pi}\left[3 r^{2}-\frac{3}{4} r^{4}\right]_{r=0}^{r=\sqrt{2}} d \theta=6 \pi
$$

Problem 8 The region R is the triangle formed by the lines $y=x \sqrt{3}, y=x$ and $x=2$.
The angle made by the line $y=x \sqrt{3}$ with the positive x-axis is $\pi / 3$, while the angle made by the line $y=x$ with the positive x-axis is $\pi / 4$. The line $x=2$ crosses the two lines at $(2,2 \sqrt{3})$ and $(2,2)$. The line $x=2$ is given in polar coordinates by $r \cos \theta=2$, hence $r=\frac{2}{\cos \theta}$.

$$
\int_{0}^{2} \int_{x}^{x \sqrt{3}} x d y d x=\int_{\pi / 4}^{\pi / 3} \int_{0}^{2 / \cos \theta} r^{2} \cos \theta d r d \theta=\frac{8}{3} \int_{\pi / 4}^{\pi / 3} \frac{1}{\cos ^{2} \theta}=\frac{8}{3}[\tan \theta]_{\theta=\pi / 4}^{\theta=\pi / 3}=\frac{8}{3}(\sqrt{3}-1)
$$

Problem 9 (a) The region of integration is the triangle made by the lines $y=x, y=2 x$ and $x=1$. It has vertices $(0,0),(1,1)$ and $(1,2)$.
(b) For $0 \leq y \leq 1$, have $y / 2 \leq x \leq y$ and for $1 \leq y \leq 2$, have $y / 2 \leq x \leq 1$. So

$$
\int_{0}^{1} \int_{x}^{2 x} d y d x=\int_{0}^{1} \int_{y / 2}^{y} d x d y+\int_{1}^{2} \int_{y / 2}^{1} d x d y
$$

Problem 10 The ball of radius 5 is the solid B given by $x^{2}+y^{2}+z^{2} \leq 25$. Its shadow on the $x y$-plane is the disk of radius 5 . In rectangular coordinates

$$
\operatorname{vol}(B)=\iiint_{B} d V=\int_{-5}^{5} \int_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} \int_{-\sqrt{25-x^{2}-y^{2}}}^{\sqrt{25-x^{2}-y^{2}}} d z d y d x
$$

Using the Jacobian of the spherical coordinate change, we have $d z d y d x=\rho^{2} \sin \phi d \rho d \phi d \theta$. The ball of radius 5 has equation $\rho \leq 5$. Thus θ takes any value in $[0,2 \pi)$ and ϕ takes any value in $[0, \pi]$ and we have

$$
\operatorname{vol}(B)=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{5} \rho^{2} \sin \phi d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{\rho^{3}}{3} \sin \phi\right]_{\rho=0}^{\rho=5} d \phi d \theta=\frac{5^{3}}{3} \int_{0}^{2 \pi}[-\cos \phi]_{\phi=0}^{\phi=\pi} d \theta
$$

This equals

$$
2 \cdot \frac{5^{3}}{3}(2 \pi)=\frac{500 \pi}{3}
$$

Problem 11 The region is inside the the unit circle $x^{2}+y^{2}=1$, outside $x^{2}+y^{2}=2 y \Longleftrightarrow x^{2}+(y-1)^{2}=1$ the circle of radius 1 centered at $(0,1)$ and with $x, y \geq 0$. In the $u v$-plane this becomes the triangle T with sides $u=1, v=0$ and $u=v$. Its vertices are at $(0,0),(1,0)$ and $(1,1)$. We need to compute the Jacobian of the transformation

$$
J=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
2 x & 2 y \\
2 x & 2 y-2
\end{array}\right|=-4 x .
$$

We have to take absolute value, and since $x \geq 0$, we get $d u d v=4 x d x d y$. Therefore

$$
\begin{array}{r}
\int_{0}^{1 / 2} \int_{\sqrt{2 y-y^{2}}}^{\sqrt{1-y^{2}}} x e^{y} d x d y=\frac{1}{4} \iint_{T} e^{y} d u d v=\frac{1}{4} \int_{0}^{1} \int_{0}^{u} e^{u / 2-v / 2} d v d u=\frac{1}{4} \int_{0}^{1}\left[-2 e^{u / 2-v / 2}\right]_{v=0}^{v=u} d u \\
=\frac{1}{4} \int_{0}^{1}\left(2 e^{u / 2}-2\right) d u=\left[e^{u / 2}-\frac{u}{2}\right]_{u=0}^{u=1}=\sqrt{e}-\frac{3}{2}
\end{array}
$$

Problem 12 (a) $\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|=\left|\begin{array}{cc}2 x / y & -x^{2} / y^{2} \\ y & x\end{array}\right|=\frac{3 x^{2}}{y}$.

Therefore

$$
d u d v=\frac{3 x^{2}}{y} d x d y=3 u d x d y \Longrightarrow d x d y=\frac{1}{3 u} d u d v .
$$

(b) $\int_{1}^{5} \int_{2}^{4} \frac{1}{3 u} d v d u=\frac{2}{3} \int_{1}^{5} \frac{1}{u} d u=\frac{2}{3} \ln 5$.

Problem 14 Need to check that $\vec{F}(\vec{c}(t))=\vec{c}(t)$.
(a) yes: $\vec{F}(\vec{c}(t))=\vec{F}\left(t^{3}, \sqrt{t},-t,-\log t\right)=\left(3 t^{2}, \frac{1}{2 \sqrt{t}}, \frac{t^{2}}{-t^{3}},-\frac{1}{t}\right)=\vec{c}^{\prime}(t)$.
(b) yes: $\vec{F}(\vec{c}(t))=(-\sin t, \cos t)=\vec{c}(t)$.
(c) no: $\vec{F}(\vec{c}(t))=(-\cos t, \sin t) \neq \vec{c}(t)=(\cos t,-\sin t)$.
(d) no: $\vec{F}(x, y)=(-\sin t, t) \neq \vec{c}^{\prime}(t)=(1, \cos t)$.

Problem 15 Want to have $\vec{F}(\vec{c}(t))=\vec{c}^{\prime}(t)$, i.e. $\left(e^{2 t}+2 t e^{2 t}, b, 2 e^{2 t}\right)=\left(a t e^{a t}+e^{a t}, 1,2 e^{2 t}\right)$. Hence $a=2, b=1$.
Problem 16 Need to see if $\operatorname{curl} \vec{F}=N_{x}-M_{y}$ is 0 .
(a) $M=x, N=-y$ so $M_{y}=0, N_{x}=0$. Since they are equal, this is a gradient field. Potential is $f(x, y)$ such that $\vec{F}=\nabla f$, i.e. $f_{x}=x, f_{y}=-y$. Therefore $f(x, y)=\frac{x^{2}}{2}+c(y)$ and $c^{\prime}(y)=-y$. So $f(x, y)=\frac{x^{2}-y^{2}}{2}+$ const.
(b) $M=y, N=y^{2}$ so $M_{y}=1, N_{x}=0$. This is not a gradient field.
(c) $M=2 x y, N=x^{2}+y^{2}$ so $M_{y}=2 x, N_{x}=2 x$. Hence \vec{F} is a gradient field. Want to find $f(x, y)$ such that $\vec{F}=\nabla f$, i.e. $f_{x}=2 x y, f_{y}=x^{2}+y^{2}$. From the first relation we get $f(x, y)=x^{2} y+c(y)$. Plugging into second, get $x^{2}+c^{\prime}(y)=x^{2}+y^{2}$ so $c(y)=y^{3} / 3+$ const. Thus $f(x, y)=x^{2} y+\frac{y^{3}}{3}+$ const.

Problem $17 \vec{F}=\left(a x^{2} y+y^{3}+1\right) \hat{\mathbf{i}}+\left(2 x^{3}+b x y^{2}+2\right) \hat{\mathbf{j}}$
(a) Want $\frac{\partial}{\partial y}\left(a x^{2} y+y^{3}+1\right)=\frac{\partial}{\partial x}\left(2 x^{3}+b x y^{2}+2\right)$, i.e. $a x^{2}+3 y^{2}=6 x^{2}+b y^{2}$. Thus $a=6, b=3$.
(b) $\vec{F}=\left(6 x^{2} y+y^{3}+1\right) \hat{\mathbf{\imath}}+\left(2 x^{3}+3 x y^{2}+2\right) \hat{\mathbf{j}}$.

We will integrate on the line segments from $(0,0)$ to $\left(x_{1}, 0\right)$ and then to $\left(x_{1}, y_{1}\right)$. On the first segment: $x=t, y=0,0 \leq t \leq x_{1}, d x=d t, d y=0$ so we get $\int_{0}^{x_{1}} 1 d t=x_{1}$. On the second segment: $x=x_{1}, y=t, 0 \leq t \leq y_{1}, d x=0, d y=d t$ so we get $\int_{0}^{y_{1}}\left(2 x_{1}^{3}+3 x_{1} t^{2}+2\right) d t=2 x_{1}^{3} y_{1}+x_{1} y_{1}^{3}+2 y_{1}$. Adding them up we get $2 x_{1}^{3} y_{1}+x_{1} y_{1}^{3}+2 y_{1}+x_{1}$, so the potential is

$$
f(x, y)=2 x^{3} y+x y^{3}+x+2 y .
$$

Check: $\nabla f=\left(6 x^{2} y+y^{3}+1,2 x^{3}+3 x y^{2}+2\right)=\vec{F}$.
(c) C starts at $(1,0)$ and ends at $\left(-e^{\pi}, 0\right)$, so FTC tells us that

$$
\int_{C} \vec{F} \cdot d \vec{r}=f\left(-e^{\pi}, 0\right)-f(1,0)=-e^{-\pi}-1 .
$$

Problem 18 (a) $N_{x}=-12 y=M_{y}$, hence \vec{F} is conservative.
(b) $f_{x}=3 x^{2}-6 y^{2} \Longrightarrow f=x^{3}-6 x y^{2}+c(y) \Longrightarrow f_{y}=-12 x y+c^{\prime}(y)=-12 x y+4 y$. So $c^{\prime}(y)=4 y \Longrightarrow c(y)=2 y^{2}+$ const. In conclusion,

$$
f=x^{3}-6 x y^{2}+2 y^{2}(+ \text { constant }) .
$$

(c) C starts at $(1,0)$ and ends at $(1,1)$, so

$$
\int_{C} \vec{F} \cdot d \vec{r}=f(1,1)-f(1,0)=(1-6+2)-1=-4
$$

Problem $19 \int_{C} y x^{3} d x+y^{2} d y=\int_{0}^{1} x^{2} x^{3} d x+\left(x^{2}\right)^{2}(2 x d x)=\int_{0}^{1} 3 x^{5} d x=\frac{1}{2}$.
Problem 20 (a) The parametrization of the unit circle C is $x=\cos t, y=\sin t, 0 \leq t \leq 2 \pi$. Then $d x=-\sin t d t, d y=\cos t d t$ and

$$
\text { work }=\int_{C} M d x+N d y=\int_{0}^{2 \pi}(5 \cos t+3 \sin t)(-\sin t d t)+(1+\cos (\sin t))(\cos t d t)
$$

Hence

$$
\text { work }=\int_{0}^{2 \pi}-(5 \cos t+3 \sin t) \sin t+(1+\cos (\sin t)) \cos t d t
$$

(b) Let R be the unit disk inside C. By Green's theorem,

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}\left(N_{x}-M_{y}\right) d A=\iint_{R}(0-3) d A=-3 \operatorname{area}(R)=-3 \pi
$$

Problem 21 (a) Since we rotate around the y-axis, we need to write x as a function of y. Have $x=y^{2}, 0 \leq$ $y \leq 1$. The area of the surface of revolution is then

$$
\int_{0}^{1}|y| \sqrt{1+(2 y)^{2}} d y=\int_{0}^{1} y \sqrt{1+(2 y)^{2}} d y
$$

Taking $u=1+4 y^{2}$, we have $d u=8 y d y$ so

$$
\int_{0}^{1} y \sqrt{1+4 y^{2}} d y=\int_{1}^{5} \sqrt{u} \frac{d u}{8}=\frac{1}{8}\left[\frac{2}{3} u^{3 / 2}\right]_{u=1}^{u=5}=\frac{1}{12}(5 \sqrt{5}-1)
$$

(b) Three of the faces of the tetrahedron are right triangles with sides equal to 1 and hypothenuse $\sqrt{2}$. The are of each of them is $1 / 2$, so their total area is $3 / 2$. The fourth face is an equilateral triangle with all sides equal to $\sqrt{2}$. The area of such a triangle is given by

$$
\frac{\sqrt{2} \sqrt{2} \sin \pi / 3}{2}=\frac{\sqrt{3}}{2}
$$

The total surface area is therefore $3 / 2+\sqrt{3} / 2$.
(c) area $=\iint_{S} d S=\iint_{u^{2}+v^{2} \leq 4}\left\|\left(x_{u}, y_{u}, z_{u}\right) \times\left(x_{v}, y_{v}, z_{v}\right)\right\| d u d v$.

$$
\left(x_{u}, y_{u}, z_{u}\right) \times\left(x_{v}, y_{v}, z_{v}\right)=(1,1, v) \times(-1,1, u)=(u-v,-u-v, 2)
$$

and its length is $\sqrt{(u-v)^{2}+(u+v)^{2}+4}=\sqrt{2 u^{2}+2 v^{2}+4}$. The are is therefore

$$
\iint_{u^{2}+v^{2} \leq 4} \sqrt{2\left(u^{2}+v^{2}\right)+4}=\int_{0}^{2} \int_{0}^{2 \pi} \sqrt{2 r^{2}+4} r d \theta d r=2 \pi \int_{0}^{2} \sqrt{2 r^{2}+4} r d r
$$

by switching to polar coordinates. Next we can set $w=2 r^{2}+4$ and get

$$
2 \pi \int_{4}^{12} w^{1 / 2} \frac{d w}{4}=\frac{\pi}{3}\left[w^{3 / 2}\right]_{w=4}^{w=12}=\frac{8 \pi}{3}(3 \sqrt{3}-1)
$$

Problem 22 see book
Problem 23 (a) normal vector is the gradient, i.e. $\left(2 x-y^{6} \sin (x y), 5 y^{4} \cos (x y)-x y^{5} \sin (x y),-6 z^{5}\right)$. At $(9,0,3)$ it becomes $(18,0,-1458)$. The tangent plane is therefore

$$
18(x-9)-1458(z-3)=0
$$

(b) $f(-1,1)=e^{2}$ and $f_{x}=4 x y e^{2 x^{2} y}+\cos (x+y), f_{y}=2 x^{2} e^{2 x^{2} y}+\cos (x+y)$. At $x=-1, y=1$ the partial derivatives are $f_{x}=-4 e^{2}+1, f_{y}=2 e^{2}+1$. The tangent plane is therefore

$$
z-e^{2}=\left(1-4 e^{2}\right)(x+1)+\left(2 e^{2}+1\right)(y-1)
$$

(c) The cylinder S is parametrized by $x=5 \cos u, y=v, z=5 \sin u$. A normal vector is $\left(x_{u}, y_{u}, z_{u}\right) \times$ $\left(x_{v}, y_{v}, z_{v}\right)=(-5 \sin u, 0,5 \cos u) \times(0,1,0)$. At $P=(3,19,4)$ we have $v=19, \sin u=4 / 5, \cos u=$ $3 / 5$. So the normal vector becomes $(-4,0,3) \times(0,1,0)=-3 \hat{\mathbf{\imath}}-4 \hat{\mathbf{k}}$. The tangent plane is

$$
-3(x-3)-4(z-4)=0 \Longleftrightarrow 3 x+4 z=25
$$

Problem 24 (a) This is similar to Example 2, page 524.

$$
\text { area }=\frac{1}{2} \int_{C} x d y-y d x
$$

where C is the curve $x^{2 / 5}+y^{2 / 5}=32^{2 / 5}$ oriented counterclockwise. We parametrize $C: x=$ $32 \cos ^{5} t y=32 \sin ^{5} t, 0 \leq t \leq 2 \pi$. Then $d x=-160 \cos ^{4} t \sin t d t$ and $d y=160 \sin ^{4} t \cos t d t$. Thus

$$
\begin{aligned}
\text { area }= & \frac{1}{2} \int_{0}^{2 \pi} 160 \cdot 32\left(\sin ^{4} t \cos ^{6} t+\sin ^{6} t \cos ^{4} t\right) d t=2560 \int_{0}^{2 \pi} \sin ^{4} t \cos ^{4} t d t \\
& =160 \int_{0}^{2 \pi} \sin ^{4}(2 t) d t=10 \int_{0}^{2 \pi}(1-\cos (4 t))^{2} d t=10 \int_{0}^{2 \pi} 1+\cos ^{2}(4 t)-2 \cos (4 t) d t \\
& =20 \pi+5 \int_{0}^{2 \pi}(1-\sin 8 t) d t-[10 \sin (4 t)]_{t=0}^{t=2 \pi}=30 \pi
\end{aligned}
$$

(b) This is problem 19, page 530.

Problem 25 (a) $\hat{\mathbf{n}}_{1}=-\hat{\mathbf{j}}, \hat{\mathbf{n}}_{2}=\hat{\mathbf{1}}, \hat{\mathbf{n}}_{3}=\hat{\mathbf{j}}, \hat{\mathbf{n}}_{4}=-\hat{\mathbf{\imath}}$

(b) The flux out of R is the flux across $C=C_{1}+C_{2}+C_{3}+C_{4}$ and is given by

$$
\sum_{i=1}^{4} \int_{C_{i}} \vec{F} \cdot \hat{\mathbf{n}}_{i} d s=\iint_{R} \operatorname{div} \vec{F} d A
$$

and $\operatorname{div} \vec{F}=y+\cos x \cos y-\cos x \cos y=y$. So

$$
\iint_{R} \operatorname{div} \vec{F} d A=\int_{0}^{4} \int_{0}^{1} y d x d y=\int_{0}^{4} y d y=8
$$

(c) On $C_{4}, x=0$, so $\vec{F}=-\sin y \hat{\mathbf{j}}$, whereas $\hat{\mathbf{n}}_{4}=-\hat{\mathbf{1}}$. Hence $\vec{F} \perp \hat{\mathbf{n}}_{4}$ and $\vec{F} \cdot \hat{\mathbf{n}}_{4}=0$. Therefore the flux of \vec{F} through C_{4} equals 0 . Thus

$$
\sum_{i=1}^{3} \int_{C_{i}}=\sum_{i=1}^{4} \int_{C_{i}} \vec{F} \cdot \hat{\mathbf{n}}_{i} d s=\text { total flux out of } R
$$

Problem 26 This is Example 6, page 495, in the textbook.
Problem 27 This is Example 4, page 492, in the textbook.
Problem 28 (a) curl $\vec{F}=N_{x}-M_{y}=\sin (x-y)-3 x, \operatorname{div} \vec{F}=M_{x}+N_{y}=3 y+\sin (x-y)$.
(b) $\operatorname{curl} \vec{F}=N_{x}-M_{y}=\frac{y}{1+x^{2} y^{2}}-2 e^{x+2 y}, \operatorname{div} \vec{F}=M_{x}+N_{y}=e^{x+2 y}+\frac{x}{1+x^{2} y^{2}}$.

Problem 29 (a) $\nabla \times \vec{F}=\left(0,-y e^{x y}, 0\right), \operatorname{div} F=P_{x}+Q_{y}+R_{z}=1$.
(b) $\nabla \times \vec{F}=\left(0,0, \frac{y}{1+x^{2} y^{2}}-2 e^{x+2 y}\right)$, $\operatorname{div} F=P_{x}+Q_{y}+R_{z}=e^{x+2 y}+\frac{x}{1+x^{2} y^{2}}$.
(c) $\nabla \times \vec{F}=\left(0,-2 x y, \frac{x}{\sqrt{1+x^{2}}}+2 x z\right)$, $\operatorname{div} F=P_{x}+Q_{y}+R_{z}=-2 y z+\frac{1}{\cos ^{2} z}$.

Problem 30 (a) S is the graph of $z=f(x, y)=1-x^{2}-y^{2}$, and the normal points upwards, so $\hat{\mathbf{n}} d S=$ $\left(-f_{x},-f_{y}, 1\right) d A=(2 x, 2 y, 1) d A$.
Therefore

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{\text {shadow }}(x, y, 2(1-z)) \cdot(2 x, 2 y, 1) d A=\iint_{\text {shadow }} 2 x^{2}+2 y^{2}+2(1-z) d A=\iint_{\text {shadow }} 4 x^{2}+4 y^{2} d A
$$

since $z=1-x^{2}-y^{2} \Longrightarrow 1-z=x^{2}+y^{2}$.
Shadow $=$ unit disk $x^{2}+y^{2} \leq 1$; switching to polar coordinates, we have

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\int_{0}^{2 \pi} \int_{0}^{1} 4 r^{2} r d r d \theta=2 \pi
$$

(b) Let $R=$ unit disk in the $x y$-plane, with normal vector pointing down $(\hat{\mathbf{n}}=-\hat{\mathbf{k}})$. Then

$$
\iint_{R} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{R}(x, y, 2) \cdot(-\hat{\mathbf{k}}) d S=-\iint_{R}-2 d S=-2 \operatorname{area}(R)=-2 \pi
$$

By the divergence theorem,

$$
\iint_{S+R} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{W}(\operatorname{div} \vec{F}) d V=0
$$

since $\operatorname{div} \vec{F}=1+1-2=0$. Therefore $\iint_{S}=-\iint_{R}=2 \pi$.
Problem $31 \operatorname{div} \vec{F}=0$, and so

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iiint_{W} \operatorname{div} \vec{F} d V=0
$$

Problem 32 (a) $\nabla \times \vec{F}=\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -2 x z & 0 & y^{2}\end{array}\right|=(2 y,-2 x, 0)$.
(b) On the unit sphere, $\hat{\mathbf{n}}=(x, y, z)$ so $(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}}=2 y x-2 x y=0$. Therefore $\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=0$.
(c) By Stokes' Theorem $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S$ where R is the region delimited by C on the unit sphere. Using the result of (b), we get $\int_{C} \vec{F} \cdot d \vec{r}=\iint_{R}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S=0$.

Problem 33 (a) $z=1$ and $x^{2}+y^{2}+z^{2}=1$, so $x^{2}+y^{2}=1$. Therefore C is the circle of radius 1 in the $z=1$ plane. Compatible orientation: counterclockwise.
Parametrization: $x=\cos t, y=\sin t, z=1$ Therefore $d x=-\sin t d t, d y=\cos t d t, d z=0$.

$$
I=\int_{C} x z d x+y d y+y d z=\int_{0}^{2 \pi}(-\cos t \sin t+\cos t \sin t) d t=0
$$

(b)

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x z & y & y
\end{array}\right|=\hat{\mathbf{i}}+x \hat{\mathbf{j}} .
$$

(c) By Stokes' Theorem

$$
\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(\nabla \times \vec{F}) \cdot \hat{\mathbf{n}} d S
$$

$\hat{\mathbf{n}}$ is the normal pointing upwards, so $\hat{\mathbf{n}}=\frac{(x, y, z)}{\sqrt{2}}$ on the upper hemisphere of radius $\sqrt{2}$. Thus

$$
I=\int_{C} \vec{F} \cdot d \vec{r}=\iint_{S}(1, x, 0) \cdot \frac{(x, y, z)}{\sqrt{2}} d S=\iint_{S} \frac{x+x y}{\sqrt{2}} d S
$$

Problem 34 (a) By taking $N=0$ in Green's theorem, we get $\int_{C} M d x=\iint_{R}-M_{y} d A$.
(b) We want $M(x, y)$ such that $-M_{y}=(x+y)^{2}$. Use $M=-\frac{1}{3}(x+y)^{3}$.

Problem 35 The surface is the graph of the function $f(x, y)=x y$ with x, y in the unit disk. The flux is upward, so

$$
\hat{\mathbf{n}} d S=+\left(-f_{x},-f_{y}, 1\right) d x d y=(-y,-x, 1) d x d y
$$

Hence

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\iint_{x^{2}+y^{2}<1}(y, x, z) \cdot(-y,-x, 1) d x d y=\iint_{x^{2}+y^{2}<1}\left(-y^{2}-x^{2}+x y\right) d x d y
$$

where we substituted $z=x y$. Using polar coordinates we get

$$
\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S=\int_{0}^{2 \pi} \int_{0}^{1}\left(-r^{2}+r^{2} \cos \theta \sin \theta\right) r d r d \theta
$$

- inner integral: $\int_{0}^{1}\left(-r^{2}+r^{2} \cos \theta \sin \theta\right) r d r=\frac{1}{4}(\cos \theta \sin \theta-1)$.
- outer integral: $\int_{0}^{2 \pi} \frac{1}{4}(\cos \theta \sin \theta-1) d \theta=\frac{1}{4}\left[\frac{\sin ^{2} \theta}{2}-\theta\right]_{\theta=0}^{\theta=2 \pi}=-\frac{\pi}{2}$.

Problem 36 (a) Consider the figure

We have $\hat{\mathbf{n}}=\frac{1}{2}(x, y, z)$, hence $\vec{F} \cdot \hat{\mathbf{n}}=(y,-x, z) \cdot \frac{(x, y, z)}{2}=\frac{z^{2}}{2}$. For the part of the sphere of radius 2 we use the parametrization $x=2 \sin \phi \cos \theta, y=2 \sin \phi \sin \theta, z=2 \cos \phi$. Then $d S=$ $2^{2} \sin \phi d \phi d \theta=4 \sin \phi d \phi d \theta$.
Since we are outside the cylinder, the bounds are $0 \leq \theta \leq 2 \pi$ and $\pi / 6 \leq \phi \leq 5 \pi / 6$. (see figure) Thus the flux is given by

$$
\int_{0}^{2 \pi} \int_{\pi / 6}^{5 \pi / 6} \frac{4 \cos ^{2} \phi}{2} 4 \sin \phi d \phi d \theta=8 \int_{0}^{2 \pi} \int_{\pi / 6}^{5 \pi / 6} \cos ^{2} \phi \sin \phi d \phi d \theta
$$

- inner integral: $\int_{\pi / 6}^{5 \pi / 6} \cos ^{2} \phi \sin \phi d \phi=\left[-\frac{\cos ^{3} \phi}{3}\right]_{\phi=\pi / 6}^{\phi=5 \pi / 6}=\frac{\sqrt{3}}{4}$.
- outer integral: $8 \int_{0}^{2 \pi} \frac{\sqrt{3}}{4} d \theta=4 \pi \sqrt{3}$.
(b) On the cylinder $\hat{\mathbf{n}}= \pm(x, y, 0)$ and so $\vec{F} \cdot \hat{\mathbf{n}}=0$. Therefore the flux is 0 .
(c) $\operatorname{div} \vec{F}=1$, hence

$$
\operatorname{vol}(W)=\iiint_{W} 1 d V=\iiint_{W}(\operatorname{div} \vec{F}) d V=\iint_{S} \vec{F} \cdot \hat{\mathbf{n}} d S+\iint_{\text {cylinder }} \vec{F} \cdot \hat{\mathbf{n}} d S=4 \pi \sqrt{3}+0=4 \pi \sqrt{3}
$$

Problem 37 (a)

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x} y z & e^{x} z+2 y z & e^{x} y+y^{2}+1
\end{array}\right|=\left(e^{x}+2 y-e^{x}-2 y\right) \hat{\mathbf{\imath}}-\left(e^{x} y-e^{x} y\right) \hat{\mathbf{j}}+\left(e^{x} z-e^{x} z\right) \hat{\mathbf{k}}=0
$$

(b) On the segment from $(0,0,0)$ to $\left(x_{1}, 0,0\right): x=t, y=0, z=0,0 \leq t \leq x_{1}, d x=d t, d y=0=d z$ so we get $\int_{0}^{x_{1}} 0 d t=0$.
On the segment from $\left(x_{1}, 0,0\right)$ to $\left(x_{1}, y_{1}, 0\right): x=x_{1}, y=t, z=0,0 \leq t \leq y_{1}, d x=0, d y=d t, d z=$ 0 so we get $\int_{0}^{y_{1}} 0 d t=0$.
On the segment from $\left(x_{1}, y_{1}, 0\right)$ to $\left(x_{1}, y_{1}, z_{1}\right): x=x_{1}, y=y_{1}, z=t, 0 \leq t \leq z_{1}, d x=0=d y, d z=$ $d t$ so we get $\int_{0}^{z_{1}}\left(e^{x_{1}} y+y_{1}^{2}+1\right) d t=\left(e^{x_{1}} y+y_{1}^{2}+1\right) z_{1}$.
Therefore

$$
f(x, y, z)=e^{x} y z+y^{2} z+z
$$

Check: $\nabla f=\left(f_{x}, f_{y}, f_{z}\right)=\left(e^{x} y z, e^{x} z+2 y z, e^{x} y+y^{2}+1\right)=\vec{F}$.
(c)

$$
\nabla \times \vec{G}=\left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\mathbf{\jmath}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & x & y
\end{array}\right|=\hat{\mathbf{i}} \neq 0 .
$$

