MATH 20E — Final Exam: solutions to practice problems

Alina Bucur

Problem 2 (a) Vf = (y— 423 1), so at (1,1) it becomes (3,1).

(b) Aw = —3Az + Ay.

1
Problem 3 2% = fuu, + fove = yfu + —fo and 2% = fyuy + fuvy = 20 — -2
ox Y oy y?

Problem 4 (a) Vf = (2zy? — 1,22%y), so at (2,1) it becomes (3, 8).

(b) 2—2=3(x—2)+8(y—1) or 3z + 8y — 2z = 12.

(¢c) Ar=19-2=—-01and Ay =1.1-1=0.1;s0 f(1.9,1.1) — f(2,1) ~ 3Azx+8Ay = —0.34+0.8 =
0.5; since f(2,1) = 2, we obtain f(1.9,1.1) ~ 2.5

1
Problem 5 (a) w, = wyt, + wyv, = —%wu + 22w, and wy = Wylly + Wty = —Wy + 2YW,,.
T T

1
(b) 2wy +ywy, == (—%wu + 2xwv) +y (wu + 2ywv> = (_Q + Q) wy + (222 + 29w, = 20w,
x T T
(c) 2w, + yw, = 20w, = 2v(5v) = 100°.
Problem 6 vol(R) = // av
R

The equation of the sphere is 22 + y? + (z — 2)? = 16.
2
The shadow of R on the zy-plane is given by the quarter of the ellipse %2 + % = 1 that sits in the

first quadrant z,y > 0. So 0 < z < 2 and for each  we have 0 <y < 34/1 — %. For each point (z,y)
in the shadow of R, have 0 < z < 2+ /16 — 22 — y2. Hence

2 p3y/1-22 24,/ 16—z2—y2
vol(R) = / / / dzdydx.
o Jo 0

Problem 7 The two surfaces are paraboloids. The shadow of the region on the xy-plane is determined by
the intersection of these two paraboloids. In other words, we need z = 4 — 2 — y? to sit underneath
2z =10 —42? — 4y? ie. 4 — 2% — y? < 10 — 422 — 4y2. That is, we need 322 + 3y? < 6 < 22 + y? < 2.

So,
10—4z2 —4y?
vol = // / dVv.
r24y2<2 J4—x2—y?

From here it’s best to switch to cylindrical coordinates, so



r=v2

27 10—4r2 2 V2 27 3
vol = / / / rdzdrdf = / / (6 — 3r%) dr df = / [37‘2 - rﬂ df = 6.
4 0 0 0 4],

Problem 8 The region R is the triangle formed by the lines y = 2v/3, y = = and = 2.
The angle made by the line y = 2v/3 with the positive x-axis is 7/3, while the angle made by the line
y = x with the positive z-axis is 7/4. The line = 2 crosses the two lines at (2,2+/3) and (2,2). The
line x = 2 is given in polar coordinates by 7 cosf = 2, hence r =

cosf’

7/3 p2/cosf 8 /3 1 8 0=n/3 8
dydx = 2 Odrdf = - ——— = — | tanéf -1
/ / raver= /7r /0 eosTar 3/7r/4 cos2 6 3[ a ]9:#/4 3(\/§ )

Problem 9 (a) The region of integration is the triangle made by the lines y = z, y = 2z and = = 1. It has
vertices (0,0), (1,1) and (1,2).

(b) For 0 <y <1, have y/2 <z <y and for 1 <y <2 have y/2 <z <1.So

1 2x 1 Yy 2 1
/ / dydx = / / dxdy + / / dxdy.
0 Jz 0 Jy/2 1 Jy/2

Problem 10 The ball of radius 5 is the solid B given by 22 4+ y? + 22 < 25. Its shadow on the xy-plane is
the disk of radius 5. In rectangular coordinates

V25—z2 25— 12,y
vol(B / / v = / / / dzdydz.
V25—z2 25— x27y
Using the Jacobian of the spherical coordinate change, we have dzdydr = p? sin ¢pdpdpdf. The ball of

radius 5 has equation p < 5. Thus 6 takes any value in [0,27) and ¢ takes any value in [0, 7] and we
have

27 T 5 27 T p3 p=5 53 27
vol(B) = / / / p? sin pdpdpdf = / / {3 sin (b} d¢dd = 3/ [— cos ¢}¢ T do
o Jo Jo o Jo =0 0

This equals
53 5007
2. —(27) = —.
5m =3

Problem 11 The region is inside the the unit circle 2% +y? = 1, outside 2% +y? =2y <= 2%+ (y—1)* =1
the circle of radius 1 centered at (0,1) and with x,y > 0. In the wv-plane this becomes the triangle T
with sides u = 1,v = 0 and u = v. Its vertices are at (0,0),(1,0) and (1,1). We need to compute the
Jacobian of the transformation

A(u,v) _
d(z,y)

We have to take absolute value, and since x > 0, we get dudv = 4xdzdy. Therefore

1/2 .
/ / a:eydxdy _ // eV dudy — / / /202 o du, — 7/ [ 2€u/2—v/2j| du
Qy y? v=0

:4/0 (2e%/% — )du—[“/2 g]u:1:\/é—§.

2x 2y
20 2y —2

Ug Uyl _
Vg Uy

’ —4zx.



_|22/y —a?/y?
=™ i

Ug Uy
Vg Uy

e

o

Problem 12 (a) Ou,v) _
)

Therefore )
1
dudv = 3%dycoly = 3udrdy = dxdy = B—Ududv.

5
//—dvdU—f/ ldu:gln&
1 u 3

Problem 14 Need to check that F(&(t)) = & (t).

2
(a) yes: F(&(t)) = F(3,Vt,—t, —logt) = (3t2 2\1[ ! 1) =2().

(b) yes: F(&(t)) = (—sint,cost) = ().
(¢) no: F(&(t)) = (—cost,sint) # (t) = (cost, —sint).
(d) no: F(z,y) = (—sint,t) # & (t) = (1, cost).

Problem 15 Want to have F(&(t)) = @ (t), i.e. (e2t+2te2t,b,2¢%) = (ate™ +e,1,2¢%). Hence a = 2,b = 1.
Problem 16 Need to see if curl F = Ny —M,is 0
(a) M =2,N = —y so M, = 0, N, = 0. Since they are equal, this is a gradient field. Potential is
f(x,y) such that F=vV/f ie f,=uz, fy = —y. Therefore f(z,y) = w—; +c(y) and ¢/ (y) = —y. So
22
f(z,y) = =F% + const.
(b) M =y,N =y?*so M, =1,N, = 0. This is not a gradient field.
(¢) M =2zy, N = 2% +y* so M, = 2z, N, = 2x. Hence F' is a gradient field. Want to find f(z, )
such that F = Vf, ie. fu =2zy, f, = 2*+y>. From the first relation we get f(z,y) = 2%y +c(y).

Plugging into second, get z2 + ¢/ (y) = 22 + 32 so c(y) = y3/3 + const. Thus f(z,y) = z%y + % +
const.

Problem 17 F = (az®y + y° + 1)i + (22° + bay® + 2)]
a ant az’y +y* + 23 4+ bxy? + 2), i.e. ax? + 3y? = 622 + by?. Thus a = 6,b = 3.
Wi 8 1 61: 2 b 2), 1 2 3 2 6 2 b 2 Th 6.0 3

(b) F = (633 y+y>+ Di+ (223 + 32y + 2)j.
We will integrate on the line segments from (0,0) to (z1,0) and then to (z1,y;). On the first
segment: x =t,y = 0,0 <t < xy,dr =dt,dy = 0 so we get foxl 1dt = x1. On the second segment:
r=x1,y=10<t <y, dr=0,dy = dt so we get f(;yl (223 + 3z1t% + 2)dt = 223y; + 2195 + 2u1.
Adding them up we get 223y + 2193 + 2y1 + 21, so the potential is

fla,y) =22y + 2y’ + o +2y.
Check: Vf = (622y + 33 + 1,223 4 32y% + 2) = F.
(c) C starts at (1,0) and ends at (—e™,0), so FTC tells us that
/ F-di = f(—e™,0) — f(1,0) = —e~ " — 1.
c

Problem 18 (a) N, = —12y = M, hence F is conservative.

(b) fo =322 —6y? = [ =2a2%—6zy*+cly) = f, = —12z0y+(y) = —122y + 4y. So
d(y) =4y = c(y) = 2y>+ const. In conclusion,

f = 2% — 6xy® + 2y*(+ constant).



(c) C starts at (1,0) and ends at (1, 1), so

/ﬁ-dfzf(1,1)—f(1,0):(1—6+2)—1:—4.
C

1 1

1

Problem 19 / yride + yPdy = / w2x3dr + (x2)2 (2zdx) = / 3z5dx = 7
c 0 0

Problem 20 (a) The parametrization of the unit circle C is x = cost,y = sint,0 < t < 27. Then
dx = —sintdt,dy = costdt and

27
work = / Mdx + Ndy = / (5cost + 3sint)(—sintdt) + (1 4 cos(sint))(costdt).
c 0

Hence

2m
work = / —(bcost+ 3sint)sint + (1 + cos(sint)) cost dt.
0

(b) Let R be the unit disk inside C. By Green’s theorem,

/Cﬁ - dF = //R(Nz — M,)dA = //R(o — 3)dA = —3area(R) = —3m.

Problem 21 (a) Since we rotate around the y-axis, we need to write z as a function of y. Have x = y2,0 <
y < 1. The area of the surface of revolution is then

/0 lylv/1+ (2y)%dy :/0 yv 1+ (2y)2dy.

Taking u = 1 + 4y?, we have du = Sydy so

1 5 12 u=h
/ yv/ 1+ 4dy?dy = / \/ﬁd—u =2 | u¥/? = —(5vV5-1).
0 VTR TR Y ] 12

(b) Three of the faces of the tetrahedron are right triangles with sides equal to 1 and hypothenuse
V2. The are of each of them is 1/2, so their total area is 3/2. The fourth face is an equilateral
triangle with all sides equal to v/2. The area of such a triangle is given by

V2y/2sin/3 _ V3

2 2
The total surface area is therefore 3/2 + v/3/2.
(€) aren = [f5dS = [f,n oy |t 20) X (20,30, 2) [ dudo.

(xuayuvzu) X (:Evay'uazv) = (17 1,U) X (_17 lau) = (u -V, U — U72)

and its length is \/(u — v)2 + (u + v)2 + 4 = v2u2 + 202 + 4. The are is therefore

2 pon 2
// V2(u2+0v?)+4 = / / V 2r2 + 4rdfdr = 271'/ V2r2 4+ 4rdr
u2+4+v2<4 0 0 0

by switching to polar coordinates. Next we can set w = 2r? + 4 and get

12 —
d w=12 8
o [ ot ] S,



Problem 22 see book

Problem 23 (a) normal vector is the gradient, i.e. (2x — y%sin(zy),5y* cos(zy) — zy° sin(zy), —62°). At
(9,0, 3) it becomes (18,0, —1458). The tangent plane is therefore

18(z — 9) — 1458(z — 3) = 0.

(b) f(=1,1) =¢? and f, = Azye®’y + cos(z +y), fy = 27220’y 4 cos(z +y). At x = -1,y =1 the
partial derivatives are f, = —4e® + 1, f, = 2e? + 1. The tangent plane is therefore

z—e*=(1—4e)(z+1)+ (2 +1)(y —1).
(¢) The cylinder S is parametrized by = 5 cosu,y = v,z = bsinu. A normal vector i (., Yu, 24) ¥

(Ty, Yv, 20) = (—5sinwu, 0,5 cosu) x (0,1,0). At P = (3,19,4) we have v = 19,sinu = 4/5, cosu =
3/5. So the normal vector becomes (—4,0,3) x (0,1,0) = —31 — 4k. The tangent plane is

—3(x—3)—4(2—4)=0 < 3z +4z=25.

Problem 24 (a) This is similar to Example 2, page 524.

1
area = f/ xdy — ydx
2 Jo

where C' is the curve 2%/5 + y?/5> = 322/% oriented counterclockwise. We parametrize C' : z =
32 cos® ty = 32 sin® t,0 <t < 2m. Then dr = —160 cos* tsintdt and dy = 160 sin ¢ cos tdt. Thus

1 2m 2
area = 5 / 160 - 32(sin* ¢ cos® t + sin® ¢ cos* t)dt = 2560/ sin® ¢ cos* tdt

0 0

2 2 2

= 160/ sin® (2t)dt = 10/ (1 — cos(4t))?dt = 10/ 1+ cos?(4t) — 2 cos(4t)dt
0 0 0
2
=207 + 5/ (1 — sin8t)dt — [10sin(4¢)]\=c" = 307
0

(b) This is problem 19, page 530.

Problem 25 (a) iy = —j, s =1, 03 = j, Ay = —i
(0,4) g (1,4)
Cy Co
(0,0) > (1,0)

(b) The flux out of R is the flux across C' = C; + Cy + C5 + Cy and is given by

4
Z/ ﬁ-ﬁids:// div FdA
i=1/Ci R



and div F = Y + COST COSY — COSTCosSy = ¥y. SO

4 1 4
// divﬁdA:/ / ydxdy:/ ydy = 8.
R 0 0 0

(¢) On Cy4, z = 0, so F = —sinyj, whereas ny = —1i. Hence F | fiy and F - fy = 0. Therefore the
flux of F' through Cj equals 0. Thus

3 4
Z/ - Z/ F - f;ds = total flux out of R.
i=17C =17C

Problem 26 This is Example 6, page 495, in the textbook.
Problem 27 This is Example 4, page 492, in the textbook.

Problem 28 (a) curl F = N, — M, = sin(z — y) — 3z,div F' = M, + N, = 3y + sin(z — y).

i _ Yy x+2 . oo _x+2 z

(b) curlF—Nz—My—71_|_x2y2 — 2TV divF =M, + Ny=e y+71+x2y2'
Problem 29 (a) V x F = (0, —ye™,0),divF =P, + Qy+ R, = 1.

i Yy z+2 : _ _x+2 €
(b) Vx F = (0’0’1+x2y2 -2 y)’leF—Pw‘LQyJFRz—e y+1+x2y§~

o x

F=(0—-20y — 19 ivF =P -9 .
(c) V x <O, Ty, 1—|—x2+ xz>7d1v » +Qy+ R yz+cos22

Problem 30 (a) S is the graph of z = f(x,y) = 1 — 2% — 9%, and the normal points upwards, so ndS =
(—fa, —fy, 1)dA = (22,2y, 1)dA.
Therefore

// F-adS = // (z,y,2(1-2))-(2z, 2y, 1)dA = 202 +2y? +2(1—2)dA = // 4o’ +4y*dA
S shadow shadow shadow

since 2 =1—22—9? = 1—2z=2a%+y>%
Shadow = unit disk 2 + y? < 1; switching to polar coordinates, we have

27 1
/ / F.ndS = / / 4r2rdrdd = 2r.
S 0 0

(b) Let R = unit disk in the zy-plane, with normal vector pointing down (i = —k). Then

//Rﬁ.ﬁds = //R(:c,yﬂ) - (~k)dS = —//R —2dS = —2area(R) = —27.

By the divergence theorem,
// ﬁ.ﬁdS:// (div F)dV = 0,
S+R w

since div F = 1 + 1 — 2 = 0. Therefore [lg=—[[p=2m.

//ﬁ-ﬁdsz/// div FdV = 0.
S w

Problem 31 divF = 0, and so



i i k
Problem 32 (a) V x F = % 6% a% = (2y, —2z,0).
—2xz 0 y?

(b) On the unit sphere, i = (2,y, 2) so (V x F)-fi = 2ya — 2y = 0. Therefore [[,(V x F)-adS = 0.

(c) By Stokes’ Theorem |, Fdi = JJR(V x F) - 1dS where R is the region delimited by C' on the
unit sphere. Using the result of (b), we get [, F.dr = JIR(V x F)-ndS = 0.

Problem 33 (a) z =1 and 22 + y* + 22 = 1, so 22 + y* = 1. Therefore C is the circle of radius 1 in the

z = 1 plane. Compatible orientation: counterclockwise.
Parametrization: z = cost,y = sint, z = 1 Therefore dx = — sintdt, dy = costdt,dz = 0.

27
Iz/xzdx—i-ydy—i—ydz:/ (—costsint + costsint)dt =0
c 0

(b) A
i j k
VX F= a% a% 8% =1-+2x]
Tz Yy Y
(c¢) By Stokes’ Theorem
/ﬁ-dF://(Vxﬁ)-ﬁdS
c s

= @22 oy the upper hemisphere of radius v/2. Thus

n is the normal pointing upwards, so n Ve

I/CF*.df//S(l,x,()).(f”’\i/;)ds//ijzi”yds.

Problem 34 (a) By taking N = 0 in Green’s theorem, we get [, Mdx = [[, —M,dA.

(b) We want M (z,y) such that —M, = (z 4+ y)?. Use M = —3(x + y)°.
Problem 35 The surface is the graph of the function f(z,y) = zy with z,y in the unit disk. The flux is

upward, so
nds = +(7fm7 7fy7 1)d$dy = (7ya -, 1)d$dy

Hence

// F-ndS = // (y,x,2) - (—y, —x,1)dzdy = // (—y? — 2* + 2y)dady
s w2 +y2<1 22+4y2<1

where we substituted z = xy. Using polar coordinates we get

27 1
// F-ndS :/ / (=12 + 7% cos O sin ) rdrd.
S 0 0

1
1
(=72 + % cos O sin 0)rdr = Z(cos@sine —1).

e inner integral:

/0
2 i 2
1 1 0
/ —(cosfsinf — 1)df = - MYy S
o 4 41 2 0=0 2

e outer integral:



Problem 36 (a) Consider the figure

We have n = %(m,y,z), hence F - f = (y,—x, 2) - (x%) = % For the part of the sphere of
radius 2 we use the parametrization z = 2sin¢cosf,y = 2sin¢sinf, z = 2cos¢. Then dS =
22 sin pdpdd = 4singdpdo.

Since we are outside the cylinder, the bounds are 0 < § < 27 and 7/6 < ¢ < 57/6. (see figure)
Thus the flux is given by

2 /6 o2 2n  p57w/6
/ / cos ¢4sin sdbdd = 8/ / cos? ¢ sin pdode.
0 Jr/6 2 o

57/6 3 ¢=57/6 3
e inner integral: / cos? ¢ sin pdg = [— €8 ¢} = f
/6 3 ¢=7/6 4
2m 3
e outer integral: 8 Td@ = 471/3.

0
(b) On the cylinder A = +(x,7,0) and so F - & = 0. Therefore the flux is 0.
(¢) divF =1, hence

vol(W)=///W1dv:///W(divﬁ)dV://Sﬁ~ﬁdS+//c hnderﬁ-ﬁdszmﬁmzmﬁ.

Problem 37 (a)

i j k
VXF = % aay % = (e"+2y—e” —2y)i—(e"y—e"y)j+(e"z—e"2)k = 0.

eyz ez +2yz e“y+y’+1

(b) On the segment from (0,0,0) to (21,0,0) : x =t,y=0,2=0,0 <t < xy,de =dt,dy =0=dz so
we get [, 0dt = 0.
On the segment from (z1,0,0) to (z1,41,0) :x =21,y =1t,2=0,0 <t < y1,dz = 0,dy = dt,dz =
0 so we get [ 0dt = 0.
On the segment from (x1,y1,0) to (z1,y1,21) :x =21,y =y1,2 =t,0 <t < z1,de =0 =dy,dz =
dt so we get [ (e"y +yi + 1)dt = (™ y+ 43 + 1)21.
Therefore

flx,y,2) = e"yz+y°2 + 2.

Check: Vf = (fz, fy. f-) = (e"yz, €%z + 2yz, "y + y?+1) = F.






