MATH 20E - Midterm 1: solutions to practice problems

Alina Bucur

Problem 3 (a) $\nabla f=\left(y-4 x^{3}, x\right)$, so at $(1,1)$ it becomes $(3,1)$.
(b) $\Delta w \approx-3 \Delta x+\Delta y$.

Problem $4 \frac{\partial w}{\partial x}=f_{u} u_{x}+f_{v} v_{x}=y f_{u}+\frac{1}{y} f_{v}$ and $\frac{\partial w}{\partial y}=f_{u} u_{y}+f_{v} v_{y}=x f_{u}-\frac{x}{y^{2}} f_{v}$.
Problem 5 (a) $\nabla f=\left(2 x y^{2}-1,2 x^{2} y\right)$, so at $(2,1)$ it becomes $(3,8)$.
(b) $z-2=3(x-2)+8(y-1)$ or $3 x+8 y-z=12$.
(c) $\Delta x=1.9-2=-0.1$ and $\Delta y=1.1-1=0.1$; so $f(1.9,1.1)-f(2,1) \approx 3 \Delta x+8 \Delta y=-0.3+0.8=$ 0.5 ; since $f(2,1)=2$, we obtain $f(1.9,1.1) \approx 2.5$

Problem 6 (a) $w_{x}=w_{u} u_{x}+w_{v} v_{x}=-\frac{y}{x^{2}} w_{u}+2 x w_{v}$ and $w_{y}=w_{u} u_{y}+w_{v} v_{y}=\frac{1}{x} w_{u}+2 y w_{v}$.
(b) $x w_{x}+y w_{y}=x\left(-\frac{y}{x^{2}} w_{u}+2 x w_{v}\right)+y\left(\frac{1}{x} w_{u}+2 y w_{v}\right)=\left(-\frac{y}{x}+\frac{y}{x}\right) w_{u}+\left(2 x^{2}+2 y^{2}\right) w_{v}=2 v w_{v}$
(c) $x w_{x}+y w_{y}=2 v w_{v}=2 v\left(5 v^{4}\right)=10 v^{5}$.

Problem $7 \operatorname{vol}(R)=\iint_{R} d V$
The equation of the sphere is $x^{2}+y^{2}+(z-2)^{2}=16$.
The shadow of R on the $x y$-plane is given by the quarter of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ that sits in the first quadrant $x, y \geq 0$. So $0 \leq x \leq 2$ and for each x we have $0 \leq y \leq 3 \sqrt{1-\frac{x^{2}}{4}}$. For each point (x, y) in the shadow of R, have $0 \leq z \leq 2+\sqrt{16-x^{2}-y^{2}}$. Hence

$$
\operatorname{vol}(R)=\int_{0}^{2} \int_{0}^{3 \sqrt{1-\frac{x^{2}}{4}}} \int_{0}^{2+\sqrt{16-x^{2}-y^{2}}} d z d y d x
$$

Problem 8 The two surfaces are paraboloids. The shadow of the region on the $x y$-plane is determined by the intersection of these two paraboloids. In other words, we need $z=4-x^{2}-y^{2}$ to sit underneath $z=10-4 x^{2}-4 y^{2}$, i.e. $4-x^{2}-y^{2} \leq 10-4 x^{2}-4 y^{2}$. That is, we need $3 x^{2}+3 y^{2} \leq 6 \Leftrightarrow x^{2}+y^{2} \leq 2$. So,

$$
\mathrm{vol}=\iint_{x^{2}+y^{2} \leq 2} \int_{4-x^{2}-y^{2}}^{10-4 x^{2}-4 y^{2}} d V
$$

From here it's best to switch to cylindrical coordinates, so

$$
\mathrm{vol}=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{4-r^{2}}^{10-4 r^{2}} r d z d r d \theta=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} r\left(6-3 r^{2}\right) d r d \theta=\int_{0}^{2 \pi}\left[3 r^{2}-\frac{3}{4} r^{4}\right]_{r=0}^{r=\sqrt{2}} d \theta=6 \pi
$$

Problem 9 The region R is the triangle formed by the lines $y=x \sqrt{3}, y=x$ and $x=2$.
The angle made by the line $y=x \sqrt{3}$ with the positive x-axis is $\pi / 3$, while the angle made by the line $y=x$ with the positive x-axis is $\pi / 4$. The line $x=2$ crosses the two lines at $(2,2 \sqrt{3})$ and $(2,2)$. The line $x=2$ is given in polar coordinates by $r \cos \theta=2$, hence $r=\frac{2}{\cos \theta}$.

$$
\int_{0}^{2} \int_{x}^{x \sqrt{3}} x d y d x=\int_{\pi / 4}^{\pi / 3} \int_{0}^{2 / \cos \theta} r^{2} \cos \theta d r d \theta=\frac{8}{3} \int_{\pi / 4}^{\pi / 3} \frac{1}{\cos ^{2} \theta}=\frac{8}{3}[\tan \theta]_{\theta=\pi / 4}^{\theta=\pi / 3}=\frac{8}{3}(\sqrt{3}-1)
$$

Problem 10 (a) The region of integration is the triangle made by the lines $y=x, y=2 x$ and $x=1$. It has vertices $(0,0),(1,1)$ and $(1,2)$.
(b) For $0 \leq y \leq 1$, have $y / 2 \leq x \leq y$ and for $1 \leq y \leq 2$, have $y / 2 \leq x \leq 1$. So

$$
\int_{0}^{1} \int_{x}^{2 x} d y d x=\int_{0}^{1} \int_{y / 2}^{y} d x d y+\int_{1}^{2} \int_{y / 2}^{1} d x d y
$$

Problem 11 The ball of radius 5 is the solid B given by $x^{2}+y^{2}+z^{2} \leq 25$. Its shadow on the $x y$-plane is the disk of radius 5 . In rectangular coordinates

$$
\operatorname{vol}(B)=\iiint_{B} d V=\int_{-5}^{5} \int_{-\sqrt{25-x^{2}}}^{\sqrt{25-x^{2}}} \int_{-\sqrt{25-x^{2}-y^{2}}}^{\sqrt{25-x^{2}-y^{2}}} d z d y d x
$$

Using the Jacobian of the spherical coordinate change, we have $d z d y d x=\rho^{2} \sin \phi d \rho d \phi d \theta$. The ball of radius 5 has equation $\rho \leq 5$. Thus θ takes any value in $[0,2 \pi)$ and ϕ takes any value in $[0, \pi]$ and we have

$$
\operatorname{vol}(B)=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{5} \rho^{2} \sin \phi d \rho d \phi d \theta=\int_{0}^{2 \pi} \int_{0}^{\pi}\left[\frac{\rho^{3}}{3} \sin \phi\right]_{\rho=0}^{\rho=5} d \phi d \theta=\frac{5^{3}}{3} \int_{0}^{2 \pi}[-\cos \phi]_{\phi=0}^{\phi=\pi} d \theta
$$

This equals

$$
2 \cdot \frac{5^{3}}{3}(2 \pi)=\frac{500 \pi}{3}
$$

Problem 12 The region is inside the the unit circle $x^{2}+y^{2}=1$, outside $x^{2}+y^{2}=2 y \Longleftrightarrow x^{2}+(y-1)^{2}=1$ the circle of radius 1 centered at $(0,1)$ and with $x, y \geq 0$. In the $u v$-plane this becomes the triangle T with sides $u=1, v=0$ and $u=v$. Its vertices are at $(0,0),(1,0)$ and $(1,1)$. We need to compute the Jacobian of the transformation

$$
J=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
2 x & 2 y \\
2 x & 2 y-2
\end{array}\right|=-4 x .
$$

We have to take absolute value, and since $x \geq 0$, we get $d u d v=4 x d x d y$. Therefore

$$
\begin{array}{r}
\int_{0}^{1 / 2} \int_{\sqrt{2 y-y^{2}}}^{\sqrt{1-y^{2}}} x e^{y} d x d y=\iint_{T} e^{y} d u d v=\int_{0}^{1} \int_{0}^{u} e^{u / 2-v / 2} d v d u=\int_{0}^{1}\left[-2 e^{u / 2-v / 2}\right]_{v=0}^{v=u} d u \\
=\int_{0}^{1}\left(2 e^{u / 2}-2\right) d u=\left[4 e^{u / 2}-2 u\right]_{u=0}^{u=1}=4 \sqrt{e}-6
\end{array}
$$

Problem 13 omitted
Problem 14 Need to check that $\vec{F}(\vec{c}(t))=\vec{c}^{\prime}(t)$.
(a) yes: $\vec{F}(\vec{c}(t))=\vec{F}\left(t^{3}, \sqrt{t},-t,-\log t\right)=\left(3 t^{2}, \frac{1}{2 \sqrt{t}}, \frac{t^{2}}{-t^{3}},-\frac{1}{t}\right)=\vec{c}^{\prime}(t)$.
(b) yes: $\vec{F}(\vec{c}(t))=(-\sin t, \cos t)=\vec{c}(t)$.
(c) no: $\vec{F}(\vec{c}(t))=(-\cos t, \sin t) \neq \vec{c}^{\prime}(t)=(\cos t,-\sin t)$.
(d) no: $\vec{F}(x, y)=(-\sin t, t) \neq \vec{c}^{\prime}(t)=(1, \cos t)$.

Problem 15 Want to have $\vec{F}(\vec{c}(t))=\vec{c}^{\prime}(t)$, i.e. $\left(e^{2 t}+2 t e^{2 t}, b, 2 e^{2 t}\right)=\left(a t e^{a t}+e^{a t}, 1,2 e^{2 t}\right)$. Hence $a=2, b=1$.
Problem 16 Find the potential for the following vector fields or show that the potential does not exist.
(a) $M=x, N=-y$ so $M_{y}=0, N_{x}=0$. Since they are equal, this is a gradient field. Potential is $f(x, y)$ such that $\vec{F}=\nabla f$, i.e. $f_{x}=x, f_{y}=-y$. Therefore $f(x, y)=\frac{x^{2}}{2}+c(y)$ and $c^{\prime}(y)=-y$. So $f(x, y)=\frac{x^{2}-y^{2}}{2}+$ const.
(b) $M=y, N=y^{2}$ so $M_{y}=1, N_{x}=0$. This is not a gradient field.
(c) $M=2 x y, N=x^{2}+y^{2}$ so $M_{y}=2 x, N_{x}=2 x$. Hence \vec{F} is a gradient field. Want to find $f(x, y)$ such that $\vec{F}=\nabla f$, i.e. $f_{x}=2 x y, f_{y}=x^{2}+y^{2}$. From the first relation we get $f(x, y)=x^{2} y+c(y)$. Plugging into second, get $x^{2}+c^{\prime}(y)=x^{2}+y^{2}$ so $c(y)=y^{3} / 3+$ const. Thus $f(x, y)=x^{2} y+\frac{y^{3}}{3}+$ const.
Problem 17 Let $\vec{F}=\left(a x^{2} y+y^{3}+1\right) \hat{\mathbf{\imath}}+\left(2 x^{3}+b x y^{2}+2\right) \hat{\mathbf{\jmath}}$ be a vector field, where a and b are constants.
(a) Want $\frac{\partial}{\partial y}\left(a x^{2} y+y^{3}+1\right)=\frac{\partial}{\partial x}\left(2 x^{3}+b x y^{2}+2\right)$, i.e. $a x^{2}+3 y^{2}=6 x^{2}+b y^{2}$. Thus $a=6, b=3$.
(b) $\vec{F}=\left(6 x^{2} y+y^{3}+1\right) \hat{\mathbf{\imath}}+\left(2 x^{3}+3 x y^{2}+2\right) \hat{\mathbf{j}}$.
$f_{x}=6 x^{2} y+y^{3}+1 \Longrightarrow f=2 x^{3} y+x y^{3}+x+c(y)$. Therefore, $f_{y}=2 x^{3}+3 x y^{2}+c^{\prime}(y)$. Setting this equal to N, we have $2 x^{3}+3 x y^{2}+c^{\prime}(y)=2 x^{3}+3 x y^{2}+2$ so $c^{\prime}(y)=2$ and $c=2 y$. So

$$
f=2 x^{3} y+x y^{3}+x+2 y(+ \text { constant }) .
$$

