
MATH 20E Lecture 27 - Monday, May 20, 2013

Why is Stokes’ Theorem true?

Stokes’ Theorem: If C is a closed curve in space, and S any surface bounded by C with compatible
orientation, then ∫

C

~F · d~r =
∫∫

S
(∇× ~F ) · n̂dS

”Proof” of Stokes: 1) if C and S are in the xy-plane then the statement follows from Green.

2) if C and S are in an arbitrary plane: this also reduces to Green in the given plane.
Green/Stokes works in any plane because of geometric invariance of work, curl and flux under
rotations of space. They can be defined in purely geometric terms so as not to depend on the
coordinate system (x, y, z); equivalently, we can choose coordinates (u, v, w) adapted to the given
plane, and work with those coordinates, the expressions of work, curl, flux will be the familiar ones
replacing x, y, z with u, v, w.

3) in general, we can decompose S into small pieces, each piece is nearly flat (slanted plane);
on each piece we have approximately work = flux by Greens theorem. When adding pieces, the
line integrals over the inner boundaries cancel each other and we get the line integral over C; the
flux integrals add up to flux through S.

Stokes and surface independence

In Stokes we can choose any surface S bounded by C : so if a same C bounds two surfaces S1, S2,
then

∫
C

~F · d~r =
∫∫

S1
(∇× ~F ) · n̂dS =

∫∫
S2

(∇× ~F ) · n̂dS? Can we prove directly that the two flux
integrals are equal?

Answer: change orientation of S2, then S = S1−S2 is a closed surface with n̂ pointing outwards;
so we can apply the divergence theorem:

∫∫
S(∇× ~F )·n̂dS =

∫∫∫
W div(∇× ~F )dV. But div(∇× ~F ) = 0

always. (Checked by calculating in terms of components of ~F .)

Applications of div and curl to physics

Recall: vector curl of velocity field = 2·angular velocity vector (of the rotation component of
motion). E.g., for uniform rotation about z-axis, ~v = ω(−yı̂ + x̂) and ∇× ~v = 2ωk̂.
Curl singles out the rotation component of motion (while div singles out the stretching component).

Interpretation of curl for force fields

If we have a solid in a force field (or rather an acceleration field!) ~F such that the force exerted
on ∆m at (x, y, z) is F (x, y, z)∆m : recall the torque of the force about the origin is defined as
τ = ~r × ~F and measures how ~F imparts rotation motion.
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For translation motion:
Force
mass

= acceleration =
d

dt
(velocity).

For rotation effects:
Torque

moment of inertia
= angular acceleration =

d

dt
(angular velocity).

Hence: vector curl of
Force
mass

= 2 · Torque
moment of inertia

.

Consequence: if ~F derives from a potential, then ∇× ~F = ∇× (∇f) = 0, so ~F does not induce
any rotation motion. E.g., gravitational attraction by itself does not affect Earth’s rotation. (not
strictly true: actually Earth is deformable; similarly, friction and tidal effects due to Earth’s gravi-
tational attraction explain why the Moon’s rotation and revolution around Earth are synchronous).

Div and curl of electrical field – part of Maxwells equations for electromagnetic fields.

Gauss-Coulomb law: div ~E = ρ
ε0

(ρ = charge density and ε0 = physical constant).

By divergence theorem, can reformulate as:
∫∫

S

~E · n̂dS =
∫∫∫

W
(div ~E)dV =

Q

ε0
, where Q = total

charge inside the closed surface S.
This formula tells how charges influence the electric field; e.g., it governs the relation between
voltage between the two plates of a capacitor and its electric charge.

MATH 20E Lecture 28 - Wednesday, May 22, 2013

Review for final exam - part I

vectors: dot product (~v · ~w =
∑

viwi = ‖~v‖‖~w‖ cos θ), cross product (‖~v × ~w‖ = ‖~v‖‖~w‖ sin θ =
areaparalelogram

functions of several variables
f : Rn → R f(x, y, z, . . .)
partial derivatives: fx = ∂f

∂x , fy = ∂f
∂y , fz = ∂f

∂z . . .
gradient vector: ∇f = (fx, fy, fz, . . .)
one example of chain rule:

• if g = F (u) and u = u(x, y, z) then ∂g
∂x = dF

du
∂u
∂x

More generally, the Jacobian matrix of f = (f1, . . . , fm) : Rn → Rm of n variables that takes
values in Rm is given by

T = Df(~a) =


∂f1

∂x1
(~a) . . .

∂f1

∂xn
(~a)

...
. . .

...
∂fm

∂x1
(~a) . . .

∂fm

∂xn
(~a)

 .
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chain rule: Rn f−→ Rm g−→ Rp and set h = g◦f : Rn → Rp. Then, for ~a ∈ Rn and~b = f(~a) ∈ Rm

we have D(g ◦ f)(~a) = Dg(~b) Df(~a) (matrix multiplication)
Special cases:

• ~c : R → R3, c(t) = (x(t), y(t), z(t)) path and f : R3 → R. Then the derivative of h(t) =
f(~c(t)) = f(x(t), y(t), z(t)) is

dh

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
= (∇f(~c(t))) ·

(
~c′(t)

)
.

• R3 f−→ R3 g−→ R f(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) , h(x, y, z) = g◦f = g (u(x, y, z), v(x, y, z), w(x, y, z)) .

linear approximation formula for f(x, y, z, . . .) : ∆f ≈ fx∆x + fy∆y + . . .
tangent planes to surfaces

• S is z = f(x, y) the graph of f(x, y)
Tangent plane at (x0, y0, z0) where z0 = f(x0, y0) ihas equation fx(x−x0)+fy(y−y0) = z−z0.

• S is the level surface g(x, y, z) = 0, then the tangent plane at (x0, y0, z0) has equation
∇g(x0, y0, z0) · (x− x0, y − y0, z − z0) = 0.

• S is parametrized by Φ(u, v)
normal vector: Φu × Φv

double integrals: draw the region!
setup: need bounds of integration, then evaluate first inner integral and then outer.∫∫

R
f(x, y)dA =

∫ xmax

xmin

∫ ytop(x)

ybottom(x)
f(x, y)dydx

polar coordinates: x = r cos θ, y = r sin θ =⇒ dA = rdrdθ

general change of variables: x = x(u, v), y = y(u, v) =⇒ dxdy =
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ dudv (absolute value!)

MATH 20E Lecture 29 - Friday, May 24, 2013

Review for final exam - part II

triple integrals: setup: need bounds of integration then evaluate innermost integral and get a
double integral; now do the double integral∫∫∫

W
f(x, y, z)dV =

∫∫
shadow in the xy-plane

[∫ ztop(x,y)

zbottom(x,y)
f(x, y, z)dz

]
dA

rectangular coordinates: dV = dxdydz
cylindrical coordinates: x = r cos θ, y = r sin θ, z = z =⇒ dV = dzrdrdθ
spherical coordinates: x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cos φ =⇒ dV = ρ2 sinφdρdφdθ

general change of variables: x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) =⇒ dxdydz =
∣∣∣ ∂(x,y,z)
∂(u,v,w)

∣∣∣ dudvdw
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(absolute value again!)

vector fields: recall flow lines, how to sketch vector fields
work and line integrals: work =

∫
C

~F · d~r where C is a curve in plane, space, etc. . .

in 2D: ~F = (M,N) =⇒
∫
C

~F · d~r =
∫
C Mdx + Ndy (to evaluate: express everything in terms

of a single parameter)

in 3D: ~F = (P,Q,R) =⇒
∫
C

~F · d~r =
∫
C Pdx + Qdy + Rdz (to evaluate: express everything in

terms of a single parameter)

gradient fields and path independence:
If ~F is defined in a simply connected region (in plane or space) and ∇ × ~F = 0, then ~F is a

gradient fields, i.e. ~F = ∇g for some function g(x, y) or g(x, y, z).
To find potential: 2 methods
A. compute a line integral, e.g. (0, 0) to (x1, 0) to (x1, y1)
B. antiderivatives
For gradient fields, work is given by the Fundamental Theorem of Calculus∫

C
∇g · d~r = g(end point)− g(start point).

flux in plane: flux of ~F = (M,N) across a curve C in the plane is given by

flux =
∫

C

~F · n̂ds

where n̂ is the unit normal pointing to the right of the curve (i.e. T̂ rotated 90◦ clockwise)
in coordinates

∫
C

~F · n̂ds =
∫
C Mdy − Ndx =

∫
C −Ndx + Mdy (to evaluate: same as before,

since it is a line integral)
flux in space: flux of ~F = (P,Q,R) across a surface S in space is given by

flux =
∫∫

S

~F · n̂dS =
∫∫

S

~F · d~S

where n̂ is a unit normal (orientation might be specified or left to you to choose).

• S is z = f(x, y) the graph of f(x, y) =⇒ n̂dS = ±(−fx,−fy, 1)dxdy

• S is parametrized by Φ(u, v) =⇒ n̂dS = ±Φu × Φvdudv

• if we know that ~N is a normal vector to the surface S, then n̂dS = ±
~N

~N · k̂
dA (e.g. slanted

plane; level surface g(x, y, z) = 0 and ~N = ∇g.)
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2D 3D
~F = (M,N) ~F = (P,Q,R)

work Green’s Theorem: Stokes’ Theorem:
C = closed curve oriented counterclockwise C = curve in space
enclosing region R S = any surface bounded by C

with compatible orientation∫
C

~F · d~r =
∫∫

R(curl ~F )dA ∫
C

~F · d~r =
∫∫

S(∇× ~F ) · n̂dS
in coordinates:∫
C Mdx + Ndy =

∫∫
R(Nx −My)dA where ∇× ~F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
flux Green’s theorem (normal form): Divergence theorem:

C and R as above S = closed surface enclosing solid W
n̂ pointing outwards from R n̂ pointing outwards from R∫
C

~F · n̂ds =
∫∫

R(div ~F )dA
∫∫

S
~F · n̂dS =

∫∫∫
W (div ~F )dV

in coordinates:∫
C Mdy −Ndx =

∫∫
R(Mx + Ny)dA where div ~F = Px + Qy + Rz

Have a nice summer!
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