MATH 20E Lecture 4 - Monday, April 8, 2013

More recap from MATH 20C.

Double integrals

$$
\iint_{R} f(x, y) d A, \quad d A=d x d y=d y d x
$$

We compute by reducing to an iterated integral

$$
\iint_{R} f(x, y) d A=\int_{x_{\min }}^{x_{\max }} S(x) d x, \quad \text { where } S(x)=\int_{y_{\min }(x)}^{y_{\max }(x)} f(x, y) d y \text { for each } x
$$

Example $1 f(x, y)=1-x^{2}-y^{2}$ and $R: 0 \leq x \leq 1,0 \leq y \leq 1$.

$$
\int_{0}^{1} \int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y d x
$$

How to evaluate?
1) inner integral (x is constant):

$$
\int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y=\left[y-x^{2} y-\frac{y^{3}}{3}\right]_{y=0}^{y=1}=\left(1-x^{2}-\frac{1}{3}\right)-0=\frac{2}{3}-x^{2} .
$$

2)outer integral: $\int_{0}^{1}\left(\frac{2}{3}-x^{2}\right) d x=\left[\frac{2}{3} x-\frac{x^{3}}{3}\right]_{x=0}^{x=1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.

Example 2 Same function over the quarter-disk R : $x^{2}+y^{2} \leq 1,0 \leq x \leq 1,0 \leq y \leq 1$.
How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis. Bounds from $y=0$ to $y=\sqrt{1-x^{2}}$ in the inner integral. For the outer integral: first slice is at $x=0$, last slice is at $x=1$. So we get

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x
$$

Note that the inner bounds depend on the outer variable x; the outer bounds are constants!

1) inner integral (x is constant):

$$
\int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y=\left[\left(1-x^{2}\right) y-\frac{y^{3}}{3}\right]_{y=0}^{y=\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{3 / 2}-\frac{\left(1-x^{2}\right)^{3 / 2}}{3}=\frac{1}{3}\left(1-x^{2}\right)^{3 / 2}
$$

2)outer integral:

$$
\int_{0}^{1} \frac{1}{3}\left(1-x^{2}\right)^{3 / 2} d x=\ldots\left(\text { trig substitution } x=\sin \theta, \text { double angle formulas) } \ldots=\frac{\pi}{8}\right.
$$

This is complicated! It will be easier to do it in polar coordinates.

Example $3 \int_{0}^{1} \int_{y}^{\sqrt{y}} \frac{e^{x}}{x} d x d y$ (Inner integral has no formula.)
To exchange order: 1) draw the region (here: $y \leq x \leq \sqrt{y}$ for $0 \leq y \leq 1$ - picture drawn on blackboard).
2) figure out bounds in other direction: fixing a value of x, what are the bounds for y ? Picture: left border is $y=x$, right is $x^{2}=y$; first slice is $x=0$, last slice is $x=1$, so we get

$$
\int_{0}^{1} \int_{x^{2}}^{x} \frac{e^{x}}{x} d y d x=\int_{0}^{1} \frac{e^{x}}{x}\left(x-x^{2}\right) d x=\int_{0}^{1} e^{x}(1-x) d x \stackrel{\text { parts }}{=}\left[e^{x}(1-x)\right]_{x=0}^{x=1}+\int_{0}^{1} e^{x} d x=e-2 .
$$

Example 4 Find the volume of the region enclosed by $z=1-y^{2}$ and $z=y^{2}-1$ for $0 \leq x \leq 2$.
Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at $1-y^{2}=$ $y^{2}-1 \Longrightarrow y= \pm 1$. So $z=0$ and x can be anything, therefore lines parallel to the x-axis (picture drawn). Get volume by integrating the difference $z_{\mathrm{top}}-z_{\mathrm{bottom}}$, i.e. take the volume under the top surface and subtract the volume under the bottom surface (same idea as in 1 variable).

$$
\begin{aligned}
\operatorname{vol}=\int_{0}^{2} \int_{-1}^{1}\left(\left(1-y^{2}\right)-\left(y^{2}-1\right)\right) d y d x=2 \int_{0}^{2} \int_{-1}^{1} & \left(1-y^{2}\right) d y d x \\
& =2 \int_{0}^{2}\left[y-\frac{y^{3}}{3}\right]_{y=-1}^{y=1} d x=2 \int_{0}^{2} \frac{4}{3} d x=\frac{16}{3}
\end{aligned}
$$

Triple integrals

$$
\iiint_{R} f(x, y, z) d V \quad(R \text { is a solid in space })
$$

Note: $\Delta V=$ area(base) \cdot height $=\Delta A \Delta z$, so $d V=d A d z=d x d y d z$ or any permutation of the three.
Example $1 R$: the region between paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$. (picture drawn)
The volume of this region is $\iiint_{R} 1 d V=\iint_{D}\left[\int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z\right] d A$, where D is the shadow in the $x y$-plane of the region R.

To set up bounds, (1) for fixed (x, y) find bounds for z : here lower limit is $z=x^{2}+y^{2}$, upper limit is $z=4-x^{2}-y^{2}$; (2) find the shadow of R onto the $x y$-plane, i.e. set of values of (x, y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane $z=2$; general method: for which (x, y) is z on top surface $\geq z$ on bottom surface? Answer: when $4-x^{2}-y^{2} \geq x^{2}+y^{2}$, i.e. $x^{2}+y^{2} \leq 2$. So we integrate over a disk of radius $\sqrt{2}$ in the $x y$-plane. By usual method to set up double integrals, we finally get

$$
\operatorname{vol}(R)=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d y d x
$$

Actual evaluation would be easier using polar coordinates.

MATH 20E Lecture 5 - Wednesday, April 10, 2013

Discussed Examples 5 and 6 from Section 5.5.

MATH 20E Lecture 6 - Friday, April 12, 2013

Example 1 area of ellipse with semiaxes a and b : setting $u=x / a, v=y / b$,

$$
\iint_{(x / a)^{2}+(y / b)^{2}<1} d x d y=\iint_{u^{2}+v^{2}<1} a b d u d v=a b \iint_{u^{2}+v^{2}<1} d u d v=\pi a b .
$$

(substitution works here as in 1 -variable calculus: $d u=\frac{1}{a} d x, d v=\frac{1}{b} d y$, so $d u d v=\frac{1}{a b} d x d y$.) In general, must find out the scale factor (ratio between $d u d v$ and $d x d y$).
Example 2 set $u=3 x-2 y, v=x+y$ to simplify either integrand or bounds of integration. What is the relation between $d A=d x d y$ and $d A^{*}=d u d v$? (area elements in $x y$ - and $u v$-planes).

Answer: consider a small rectangle of area $\Delta A=\Delta x \Delta y$, it becomes in $u v$-coordinates a parallelogram of area ΔA^{*}. Here the answer is independent of which rectangle we take, so we can take for instance the unit square in $x y$-coordinates.

We have

$$
\binom{u}{v}=\left(\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right)\binom{x}{y}
$$

So the unit square in the $x y$-plane becomes a parallelogram in the $u v$-plane with sides given by the vectors $(3,1)$ and $(-2,1)$. (Picture drawn.) The are of the parallelogram is given by the the absolute value of the determinant

$$
\left|\begin{array}{cc}
3 & 1 \\
-2 & 1
\end{array}\right|=5\left(=\left|\begin{array}{cc}
3 & -2 \\
1 & 1
\end{array}\right|\right)
$$

For any rectangle $\Delta A^{*}=5 \Delta A$ and in the limit $d A^{*}=5 d A$, i.e. $d u d v=5 d x d y$. So

$$
\iint \ldots d x d y=\iint \ldots \frac{1}{5} d u d v
$$

General case: If $u=u(x, y), v=v(x, y)$ is our change of variable, the approximation formula says that $\Delta u \approx u_{x} \Delta x+u_{y} \Delta y, \Delta v \approx v_{x} \Delta x+v_{y} \Delta y$. Hence

$$
\binom{\Delta u}{\Delta v}=\left(\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)\binom{\Delta x}{\Delta y} .
$$

A small $x y$-rectangle is approx. a parallelogram in $u v$-coords, but scale factor depends on x and y now. By the same argument as before, the scale factor is the determinant.

Definition: the Jacobian is $J=\frac{\partial(u, v)}{\partial(x, y)} \stackrel{\text { def }}{=}\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|$.

Then

$$
d u d v=|J| d x d y=\left|\frac{\partial(u, v)}{\partial(x, y)}\right| d x d y
$$

(absolute value because area is the absolute value of the determinant)
Example 3: polar coordinates $x=r \cos \theta, y=r \sin \theta$:

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{ll}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r
$$

Since $r \geq 0$, get $d x d y=r d r d \theta$.

