
MATH 20E Lecture 4 - Monday, April 8, 2013

More recap from MATH 20C.

Double integrals ∫∫
R
f(x, y)dA, dA = dxdy = dydx

We compute by reducing to an iterated integral∫∫
R
f(x, y)dA =

∫ xmax

xmin

S(x)dx, where S(x) =

∫ ymax(x)

ymin(x)
f(x, y)dy for each x

Example 1 f(x, y) = 1− x2 − y2 and R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.∫ 1

0

∫ 1

0

(
1− x2 − y2

)
dy dx

How to evaluate?
1) inner integral (x is constant):∫ 1

0

(
1− x2 − y2

)
dy =

[
y − x2y − y3

3

]y=1

y=0

=

(
1− x2 − 1

3

)
− 0 =

2

3
− x2.

2)outer integral:

∫ 1

0

(
2

3
− x2

)
dx =

[
2

3
x− x3

3

]x=1

x=0

=
2

3
− 1

3
=

1

3
.

Example 2 Same function over the quarter-disk R : x2 + y2 ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
How to find the bounds of integration? Fix x constant and look at the slice of R parallel to y-axis.
Bounds from y = 0 to y =

√
1− x2 in the inner integral. For the outer integral: first slice is at

x = 0, last slice is at x = 1. So we get∫ 1

0

∫ √1−x2
0

(
1− x2 − y2

)
dy dx.

Note that the inner bounds depend on the outer variable x; the outer bounds are constants!
1) inner integral (x is constant):

∫ √1−x2
0

(
1− x2 − y2

)
dy =

[
(1− x2)y − y3

3

]y=√1−x2
y=0

= (1− x2)3/2 − (1− x2)3/2

3
=

1

3
(1− x2)3/2.

2)outer integral:∫ 1

0

1

3
(1− x2)3/2dx = . . . (trig substitution x = sin θ, double angle formulas) . . . =

π

8
.

This is complicated! It will be easier to do it in polar coordinates.
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Example 3

∫ 1

0

∫ √y
y

ex

x
dx dy (Inner integral has no formula.)

To exchange order: 1) draw the region (here: y ≤ x ≤ √y for 0 ≤ y ≤ 1 – picture drawn on
blackboard).

2) figure out bounds in other direction: fixing a value of x, what are the bounds for y? Picture:
left border is y = x, right is x2 = y; first slice is x = 0, last slice is x = 1, so we get∫ 1

0

∫ x

x2

ex

x
dy dx =

∫ 1

0

ex

x
(x− x2)dx =

∫ 1

0
ex(1− x)dx

parts
= [ex(1− x)]x=1

x=0 +

∫ 1

0
exdx = e− 2.

Example 4 Find the volume of the region enclosed by z = 1− y2 and z = y2 − 1 for 0 ≤ x ≤ 2.
Both surfaces look like parabola-shaped tunnels along the x-axis. They intersect at 1 − y2 =

y2 − 1 =⇒ y = ±1. So z = 0 and x can be anything, therefore lines parallel to the x-axis (picture
drawn). Get volume by integrating the difference ztop− zbottom, i.e. take the volume under the top
surface and subtract the volume under the bottom surface (same idea as in 1 variable).

vol =

∫ 2

0

∫ 1

−1

(
(1− y2)− (y2 − 1)

)
dy dx = 2

∫ 2

0

∫ 1

−1
(1− y2)dy dx

= 2

∫ 2

0

[
y − y3

3

]y=1

y=−1
dx = 2

∫ 2

0

4

3
dx =

16

3
.

Triple integrals ∫∫∫
R
f(x, y, z) dV (R is a solid in space)

Note: ∆V = area(base) · height = ∆A∆z, so dV = dAdz = dx dy dz or any permutation of the
three.
Example 1 R : the region between paraboloids z = x2 + y2 and z = 4− x2 − y2. (picture drawn)

The volume of this region is
∫∫∫

R 1 dV =
∫∫
D

[∫ 4−x2−y2
x2+y2 dz

]
dA, where D is the shadow in the

xy-plane of the region R.
To set up bounds, (1) for fixed (x, y) find bounds for z : here lower limit is z = x2 + y2,

upper limit is z = 4 − x2 − y2; (2) find the shadow of R onto the xy-plane, i.e. set of values of
(x, y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane
z = 2; general method: for which (x, y) is z on top surface ≥ z on bottom surface? Answer: when
4 − x2 − y2 ≥ x2 + y2, i.e. x2 + y2 ≤ 2. So we integrate over a disk of radius

√
2 in the xy-plane.

By usual method to set up double integrals, we finally get

vol(R) =

∫ √2
−
√
2

∫ √2−x2
−
√
2−x2

∫ 4−x2−y2

x2+y2
dz dy dx.

Actual evaluation would be easier using polar coordinates.
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MATH 20E Lecture 5 - Wednesday, April 10, 2013

Discussed Examples 5 and 6 from Section 5.5.

MATH 20E Lecture 6 - Friday, April 12, 2013

Example 1 area of ellipse with semiaxes a and b : setting u = x/a, v = y/b,∫∫
(x/a)2+(y/b)2<1

dxdy =

∫∫
u2+v2<1

ab dudv = ab

∫∫
u2+v2<1

dudv = πab.

(substitution works here as in 1-variable calculus: du = 1
adx, dv = 1

bdy, so dudv = 1
abdxdy.)

In general, must find out the scale factor (ratio between dudv and dxdy).
Example 2 set u = 3x − 2y, v = x + y to simplify either integrand or bounds of integration.

What is the relation between dA = dxdy and dA∗ = dudv? (area elements in xy- and uv-planes).

Answer: consider a small rectangle of area ∆A = ∆x∆y, it becomes in uv-coordinates a paral-
lelogram of area ∆A∗. Here the answer is independent of which rectangle we take, so we can take
for instance the unit square in xy-coordinates.

We have (
u
v

)
=

(
3 −2
1 1

)(
x
y

)
So the unit square in the xy-plane becomes a parallelogram in the uv-plane with sides given by

the vectors (3, 1) and (−2, 1). (Picture drawn.) The are of the parallelogram is given by the the
absolute value of the determinant ∣∣∣∣ 3 1

−2 1

∣∣∣∣ = 5

(
=

∣∣∣∣3 −2
1 1

∣∣∣∣) .
For any rectangle ∆A∗ = 5∆A and in the limit dA∗ = 5dA, i.e. dudv = 5dxdy. So∫∫

. . . dxdy =

∫∫
. . .

1

5
dudv.

General case: If u = u(x, y), v = v(x, y) is our change of variable, the approximation formula
says that ∆u ≈ ux∆x+ uy∆y,∆v ≈ vx∆x+ vy∆y. Hence(

∆u
∆v

)
=

(
ux uy
vx vy

)(
∆x
∆y

)
.

A small xy-rectangle is approx. a parallelogram in uv-coords, but scale factor depends on x
and y now. By the same argument as before, the scale factor is the determinant.

Definition: the Jacobian is J = ∂(u,v)
∂(x,y)

def
=

∣∣∣∣ux uy
vx vy

∣∣∣∣ .
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Then

dudv = |J |dxdy =
∣∣∣∂(u,v)∂(x,y)

∣∣∣ dxdy
(absolute value because area is the absolute value of the determinant)

Example 3: polar coordinates x = r cos θ, y = r sin θ :

∂(x, y)

∂(r, θ)
=

∣∣∣∣xr xθ
yr yθ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.

Since r ≥ 0, get dxdy = rdrdθ.
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