
MATH 20E Lecture 7 - Monday, April 15, 2013

Example 1: compute the integral
∫∫
x2+y2≤1,x≥0,y≥0(1− x

2 − y2)dxdy from Lecture 4 using polar

coordinates x = r cos θ, y = r sin θ (picture drawn). We have seen last time that dxdy = rdrdθ. In
polar coordinates the quarter-disk becomes 0 ≤ θ ≤ π/2, 0 ≤ r ≤ 1. Putting it all together∫∫

x2+y2≤1,x≥0,y≥0
(1− x2 − y2)dxdy =

∫ π/2

0

∫ 1

0
(1− r2)rdrdθ =

∫ π/2

0

1

4
dθ =

π

8
.

Example 2: compute
∫ 1
0

∫ 1
0 x

2y dxdy by changing to u = x, v = xy (usually motivation is to
simplify either integrand or region; here neither happens, but we just illustrate the general method).

1. Area element: Jacobian is

∂(u, v)

∂(x, y)
=

∣∣∣∣ux uy
vx vy

∣∣∣∣ =

∣∣∣∣1 0
y x

∣∣∣∣ = x.

Therefore dudv = |x|dxdy = xdxdy (since in our region x ≥ 0). Get dxdy = 1
x dudv

2. Express integrand in terms of u, v : x2y dxdy = x2y 1
xdudv = xy dudv = v dudv.

3. Find bounds (picture drawn): if we integrate dudv, then first we keep v = xy constant, slice
looks like portion of hyperbola (picture shown), parametrized by u = x. The bounds are: at
the top boundary y = 1, so v/u = 1, i.e. u = v; at the right boundary, x = 1, so u = 1. So
the inner integral is

∫ 1
v . The first slice is v = 0, the last is v = 1; so we get

∫ 1

0

∫ 1

v
v dudv.

Besides the picture in xy-coordinates (a square sliced by hyperbolas), I also drew a picture in
uv-coordinates (a triangle), which some students may find is an easier way of getting the bounds
for u and v.

Evaluate the integral ∫ 1

0

∫ 1

v
v dudv =

∫ 1

0
v(1− v) dv =

1

6
.

MATH 20E Lecture 8 - Wednesday, April 17, 2013

Change of variables for triple integrals
If u = u(x, y, z), v = v(x, y, z), w = w(x, y, z) is our change of variables, we use the same

argument as in two dimensions shows to figure out the ration between dudvdw and dxdydz. The
Jacobian of the transformation is

J =
∂(u, v, w)

∂(x, y, z)

def
=

∣∣∣∣∣∣
ux uy uz
vx vy vz
wx wy wz

∣∣∣∣∣∣ .
Then
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dudvdw = |J |dxdydz =
∣∣∣∂(u,v,w)∂(x,y,z)

∣∣∣ dxdy
(absolute value because area is the absolute value of the determinant)

Cylindrical coordinates

(r, θ, z) with x = r cos θ, y = r sin θ and z = z (unchanged); r measures distance from z-axis, θ
measures angle from xz-plane (picture drawn).
Cylinder of radius a centered on z-axis is r = a (drawn); θ = π/3 is a vertical half-plane (drawn).
Compute the Jacobian and get dxdydz = rdrdθdz.

Example R = region between paraboloids z = x2 + y2 and z = 4 − x2 − y2 (picture drawn).
Want to compute the volume of the solid, i.e.

∫∫∫
R dV.

To set up bounds:

1. for fixed (x, y) find bounds for z : here lower limit is z = x2+y2, upper limit is z = 4−x2−y2;

2. find the shadow of R onto the xy-plane, i.e. set of values of (x, y) above which region lies.
Here: R is widest at intersection of paraboloids, which is in plane z = 2; general method: for
which (x, y) is z on top surface > z on bottom surface? Answer: when 4−x2− y2 > x2 + y2,
i.e. x2 + y2 < 2. (disk of radius

√
2)

In cylindrical coordinates, we get
∫∫∫

R dxdydz =
∫ 2π
0

∫ √2
0

∫ 4−r2
r2 r dzdrdθ = . . . = 4π.

Spherical coordinates

(ρ, φ, θ)
ρ = rho = distance to origin ≥ 0
φ = phi = angle down from positive z-axis, 0 ≤ φ ≤ π
θ = same as in cylindrical coordinates, 0 ≤ θ ≤ 2π

Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates.
Formulas to remember: z = ρ cosφ, r = ρ sinφ so x = ρ sinφ cos θ, y = ρ sinφ sin θ.

ρ =
√
x2 + y2 + z2 =

√
r2 + z2. On the surface of the sphere, φ is similar to latitude, except it’s 0

at the north pole, π/2 on the equator, π at the south pole; θ is similar to longitude.

Jacobian J = ∂(x,y,z)
∂(ρ,φ,θ) = ρ2 sinφ ≥ 0, so dxdydz = ρ2 sinφdρdφdθ.

MATH 20E Lecture 9 - Friday, April 19, 2013

Vector fields: ~F assigns to a point (x1, . . . , xn) ∈ Rn a vector ~F (x1, . . . , xn).
Examples: velocity fields, e.g. wind flow (shown: chart of Santa Ana winds and hurricane

winds); force fields, e.g. gravitational field.
We will mostly be concerned with vector fields

• in 2D, i.e. for n = 2 : ~F = M ı̂ + N ̂ = (M(x, y), N(x, y)) (wind, velocity of motion in the
plane); at each point in the plane we have a vector ~F which depends on x, y.
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• in 3D, i.e. for n = 3 : ~F = P ı̂ + Q̂ + Rk̂ = (P (x, y, z), Q(x, y, z), R(x, y, z)) (gravitational
field, velocity of motion is space); at each point in space we have a vector ~F which depends
on x, y, z.

Examples drawn on blackboard (all in the plane): (1) ~F = 2̂ı + ̂ (constant vector field); (2)
~F = x̂ı; (3) ~F = x̂ı + y̂ (radially outwards); (4) ~F = −yı̂ + x̂ (explained using that the vector
(−y, x) is the vector (x, y) rotated 90◦ counterclockwise) - velocity field for uniform rotation.

Gradient vector fields: ~F = ∇f = fxı̂ + fy ̂ for some function f(x, y) (called the potential
of the vector field)

Observe: if ~F = M ı̂ + N ̂ is a gradient field then Nx = My. Indeed, if ~F = ∇f then M = fx
and N = fy, so Nx = fyx = fxy = My.

Claim: Conversely, if ~F = M ı̂ + N ̂ is defined and differentiable at every point of the plane,
and Nx = My, then ~F = M ı̂ +N ̂ is a gradient field.

Example: ~F = −yı̂ + x̂ : Nx = 1,My = −1 so ~F is not a gradient field.

Example: ~F = yı̂ + x̂ : Nx = 1 = My and ~F is defined everywhere. So ~F is a gradient field.
How to find potential f(x, y)? We need fx = y and fy = x. Integrate fx = y with respect to the
variable x (treat y as a constant) and get f(x, y) = xy+ c(y). Take derivative with respect to y and
get fy = x+c′(y). But we have fy = x, so c′(y) = 0, i.e. c(y) = constant. Thus f(x, y) = xy+ const.

Flow lines: A flow line for a 3D vector field ~F = P ı̂+Q̂+Rk̂ is a path ~c(t) = (x(t), y(t), z(t))
in R3 such that ~F (c(t)) = ~c′(t) i.e. ~F (c(t)) is tangent to the curve ~c at time t. (Concept similar in
n-dimensional space). Shown computer demo.

Example: ~F = ı̂+2x̂+3yk̂ = (1, 2x, 3y) and c(t) = (t, t2, t3). Then c′(t) = (1, 2t, 3t2) = ~F (c(t)).
Hence c(t) is a flow line for ~F .
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