MATH 20E Lecture 7 - Monday, April 15, 2013

Example 1: compute the integral $\iint_{x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0}\left(1-x^{2}-y^{2}\right) d x d y$ from Lecture 4 using polar coordinates $x=r \cos \theta, y=r \sin \theta$ (picture drawn). We have seen last time that $d x d y=r d r d \theta$. In polar coordinates the quarter-disk becomes $0 \leq \theta \leq \pi / 2,0 \leq r \leq 1$. Putting it all together

$$
\iint_{x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0}\left(1-x^{2}-y^{2}\right) d x d y=\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta=\int_{0}^{\pi / 2} \frac{1}{4} d \theta=\frac{\pi}{8}
$$

Example 2: compute $\int_{0}^{1} \int_{0}^{1} x^{2} y d x d y$ by changing to $u=x, v=x y$ (usually motivation is to simplify either integrand or region; here neither happens, but we just illustrate the general method).

1. Area element: Jacobian is

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
1 & 0 \\
y & x
\end{array}\right|=x .
$$

Therefore $d u d v=|x| d x d y=x d x d y$ (since in our region $x \geq 0$). Get $d x d y=\frac{1}{x} d u d v$
2. Express integrand in terms of $u, v: x^{2} y d x d y=x^{2} y \frac{1}{x} d u d v=x y d u d v=v d u d v$.
3. Find bounds (picture drawn): if we integrate $d u d v$, then first we keep $v=x y$ constant, slice looks like portion of hyperbola (picture shown), parametrized by $u=x$. The bounds are: at the top boundary $y=1$, so $v / u=1$, i.e. $u=v$; at the right boundary, $x=1$, so $u=1$. So the inner integral is \int_{v}^{1}. The first slice is $v=0$, the last is $v=1$; so we get

$$
\int_{0}^{1} \int_{v}^{1} v d u d v
$$

Besides the picture in $x y$-coordinates (a square sliced by hyperbolas), I also drew a picture in $u v$-coordinates (a triangle), which some students may find is an easier way of getting the bounds for u and v.

Evaluate the integral

$$
\int_{0}^{1} \int_{v}^{1} v d u d v=\int_{0}^{1} v(1-v) d v=\frac{1}{6}
$$

MATH 20E Lecture 8 - Wednesday, April 17, 2013

Change of variables for triple integrals

If $u=u(x, y, z), v=v(x, y, z), w=w(x, y, z)$ is our change of variables, we use the same argument as in two dimensions shows to figure out the ration between $d u d v d w$ and $d x d y d z$. The Jacobian of the transformation is

$$
J=\frac{\partial(u, v, w)}{\partial(x, y, z)} \stackrel{\text { def }}{=}\left|\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right|
$$

Then

$$
d u d v d w=|J| d x d y d z=\left|\frac{\partial(u, v, w)}{\partial(x, y, z)}\right| d x d y
$$

(absolute value because area is the absolute value of the determinant)

Cylindrical coordinates

(r, θ, z) with $x=r \cos \theta, y=r \sin \theta$ and $z=z$ (unchanged); r measures distance from z-axis, θ measures angle from $x z$-plane (picture drawn).
Cylinder of radius a centered on z-axis is $r=a$ (drawn); $\theta=\pi / 3$ is a vertical half-plane (drawn). Compute the Jacobian and get $d x d y d z=r d r d \theta d z$.

Example $R=$ region between paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$ (picture drawn). Want to compute the volume of the solid, i.e. $\iiint_{R} d V$.

To set up bounds:

1. for fixed (x, y) find bounds for z : here lower limit is $z=x^{2}+y^{2}$, upper limit is $z=4-x^{2}-y^{2}$;
2. find the shadow of R onto the $x y$-plane, i.e. set of values of (x, y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane $z=2$; general method: for which (x, y) is z on top surface $>z$ on bottom surface? Answer: when $4-x^{2}-y^{2}>x 2+y 2$, i.e. $x^{2}+y^{2}<2$. (disk of radius $\sqrt{2}$)

In cylindrical coordinates, we get $\iiint_{R} d x d y d z=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r^{2}}^{4-r^{2}} r d z d r d \theta=\ldots=4 \pi$.

Spherical coordinates

(ρ, ϕ, θ)
$\rho=$ rho $=$ distance to origin ≥ 0
$\phi=$ phi $=$ angle down from positive z-axis, $0 \leq \phi \leq \pi$
$\theta=$ same as in cylindrical coordinates, $0 \leq \theta \leq 2 \pi$
Diagram drawn in space, and picture of 2D slice by vertical plane with z, r coordinates.
Formulas to remember: $z=\rho \cos \phi, r=\rho \sin \phi$ so $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta$.
$\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}$. On the surface of the sphere, ϕ is similar to latitude, except it's 0 at the north pole, $\pi / 2$ on the equator, π at the south pole; θ is similar to longitude.

Jacobian $J=\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}=\rho^{2} \sin \phi \geq 0$, so $d x d y d z=\rho^{2} \sin \phi d \rho d \phi d \theta$.

MATH 20E Lecture 9 - Friday, April 19, 2013

Vector fields: \vec{F} assigns to a point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ a vector $\vec{F}\left(x_{1}, \ldots, x_{n}\right)$.
Examples: velocity fields, e.g. wind flow (shown: chart of Santa Ana winds and hurricane winds); force fields, e.g. gravitational field.

We will mostly be concerned with vector fields

- in 2D, i.e. for $n=2: \vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{j}}=(M(x, y), N(x, y))$ (wind, velocity of motion in the plane); at each point in the plane we have a vector \vec{F} which depends on x, y.
- in 3D, i.e. for $n=3: \vec{F}=P \hat{\mathbf{\imath}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}=(P(x, y, z), Q(x, y, z), R(x, y, z))$ (gravitational field, velocity of motion is space); at each point in space we have a vector \vec{F} which depends on x, y, z.

Examples drawn on blackboard (all in the plane): (1) $\vec{F}=2 \hat{\mathbf{\imath}}+\hat{\mathbf{j}}$ (constant vector field); (2) $\vec{F}=x \hat{\mathbf{i}} ;(3) \vec{F}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{j}}$ (radially outwards); (4) $\vec{F}=-y \hat{\mathbf{\imath}}+x \hat{\mathbf{j}}$ (explained using that the vector $(-y, x)$ is the vector (x, y) rotated 90° counterclockwise) - velocity field for uniform rotation.

Gradient vector fields: $\vec{F}=\nabla f=f_{x} \hat{\mathbf{1}}+f_{y} \hat{\mathbf{j}}$ for some function $f(x, y)$ (called the potential of the vector field)

Observe: if $\vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{\jmath}}$ is a gradient field then $N_{x}=M_{y}$. Indeed, if $\vec{F}=\nabla f$ then $M=f_{x}$ and $N=f_{y}$, so $N_{x}=f_{y x}=f_{x y}=M_{y}$.

Claim: Conversely, if $\vec{F}=M \hat{\mathbf{i}}+N \hat{\mathbf{j}}$ is defined and differentiable at every point of the plane, and $N_{x}=M_{y}$, then $\vec{F}=M \hat{\mathbf{\imath}}+N \hat{\mathbf{\jmath}}$ is a gradient field.

Example: $\vec{F}=-y \hat{\mathbf{1}}+x \hat{\mathbf{\jmath}}: N_{x}=1, M_{y}=-1$ so \vec{F} is not a gradient field.
Example: $\vec{F}=y \hat{\mathbf{1}}+x \hat{\mathbf{\jmath}}: N_{x}=1=M_{y}$ and \vec{F} is defined everywhere. So \vec{F} is a gradient field. How to find potential $f(x, y)$? We need $f_{x}=y$ and $f_{y}=x$. Integrate $f_{x}=y$ with respect to the variable x (treat y as a constant) and get $f(x, y)=x y+c(y)$. Take derivative with respect to y and get $f_{y}=x+c^{\prime}(y)$. But we have $f_{y}=x$, so $c^{\prime}(y)=0$, i.e. $c(y)=$ constant. Thus $f(x, y)=x y+$ const.

Flow lines: A flow line for a 3D vector field $\vec{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}$ is a path $\vec{c}(t)=(x(t), y(t), z(t))$ in \mathbb{R}^{3} such that $\vec{F}(c(t))=\vec{c}(t)$ i.e. $\vec{F}(c(t))$ is tangent to the curve \vec{c} at time t. (Concept similar in n-dimensional space). Shown computer demo.

Example: $\vec{F}=\hat{\mathbf{1}}+2 x \hat{\mathbf{j}}+3 y \hat{\mathbf{k}}=(1,2 x, 3 y)$ and $c(t)=\left(t, t^{2}, t^{3}\right)$. Then $c^{\prime}(t)=\left(1,2 t, 3 t^{2}\right)=\vec{F}(c(t))$. Hence $c(t)$ is a flow line for \vec{F}.

