
MATH 20E Lecture 10 - Monday, April 22, 2013

Review for Midterm 1

Topics: functions of several variables, partial derivatives, chain rule, approximation formula, tan-
gent planes; derivative matrix;
integration in several variables, change of variables
vector fields

Discussed problems 5 (partial derivatives, gradient, tangent plane and approximation formula),
6 (chain rule), 11 (triple integrals, spherical coordinates), 12 (general changes of variables) from
the study guide.

Recall for general changes of variables: u = u(x, y), v = v(x, y). The Jacobian is J = ∂(u,v)
∂(x,y)

def=∣∣∣∣ux uy

vx vy

∣∣∣∣ . Then dudv = |J |dxdy =
∣∣∣∂(u,v)
∂(x,y)

∣∣∣ dxdy (absolute value because area is the absolute value

of the determinant).

MATH 20E Lecture 11 - Wednesday, April 24, 2013: first midterm

MATH 20E Lecture 12 - Friday, April 26, 2013

Path integrals

Let ~c(t) be a path in n-dimensional space and f a function of n variables. We can integrate f along
~c and compute ∫

~c
fds.

Here ds stands for the arc length element as we have to cut the curve c into small pieces and
measure their length. In 2 variables, this means computing the area of a fence that follows the path
~c(t) and at every point has height equal to f(~c(t)). (Picture drawn).

To evaluate: ds = ‖~c′(t)‖dt since ‖~c′(t)‖ is the speed of a particle moving on c and distance =
speed · time. So ∫

~c
fds =

∫ b

a
f(~c(t))‖~c′(t)‖dt.

Example (3 variables): f(x, y, z) = x + y + z and ~c(t) = (cos t, sin t, t) with 0 ≤ t ≤ 2π (helix).
Then ~c′(t) = (− sin t, cos t, 1) and ‖~c′(t)‖ =

√
(− sin t)2 + (cos t)2 + 12 =

√
2.∫

~c
fds =

∫ 2π

0
f(cos t, sin t, t)

√
2dt =

√
2
∫ 2π

0
(cos t+sin t+t)dt =

√
2
[
sin t− cos t +

t2

2

]t=2π

t=0

= 2
√

2 π.

1



Work and line integrals

W = (force) · (distance) = ~F ·∆~r for a small motion ∆~r. Total work is obtained by summing these
along a trajectory C : get a “line integral”

W =
∫

C

~F · d~r

(
= lim

∆~r→0

∑
i

~F ·∆~ri

)
.

To evaluate the line integral, we observe C is parametrized by time t, with a ≤ t ≤ b and give
meaning to the notation

∫
C

~F · d~r by∫
C

~F · d~r =
∫ b

a

(
~F · d~r

dt

)
dt.

Example: ~F = −yı̂ + x̂ and C is given by x = t, y = t2, 0 ≤ t ≤ 1 (portion of parabola y = x2

from (0, 0) to (1, 1)). Then we substitute expressions in terms of t everywhere:

~F = (−y, x) = (−t2, t),
d~r

dt
=
(

dx

dt
,
dy

dt

)
= (1, 2t),

so
∫
C

~F · d~r =
∫ 1
0

~F · d~r
dt dt =

∫ 1
0 (−t2, t) · (1, 2t)dt =

∫ 1
0 t2dt = 1

3 . (In the end things always reduce to
a one-variable integral.)

New notation for line integral: ~F = (M,N), and d~r = (dx, dy) (this is in fact a differential:
if we divide both sides by dt we get the component formula for the velocity d~r/dt). So the line
integral becomes ∫

C

~F · d~r =
∫

C
Mdx + Ndy.

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral
along C. To evaluate one must express everything in terms of the chosen parameter.

In the above example, we have x = t, y = t2, so dx = dt, dy = 2tdt; then∫
C
−ydx + xdy =

∫ 1

0
−t2dt + t(2tdt) =

∫ 1

0
t2dt =

1
3
.

(same calculation as before, using different notation).
In fact, the definition of the line integral does not involve the parametrization: so the result is

the same no matter which parametrization we choose. For example we could choose to parametrize
the parabola by x = sin θ, y = sin2 θ, 0 ≤ θ ≤ π/2. Then we’d get

∫
C

~F · d~r =
∫ π/2
0 . . . dθ would be

equivalent to the previous one under the substitution t = sin θ and would again be equal to 1/3. In
practice we always choose the simplest parametrization!
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