MATH 20E Lecture 10 - Monday, April 22, 2013

Review for Midterm 1

Topics: functions of several variables, partial derivatives, chain rule, approximation formula, tangent planes; derivative matrix;
integration in several variables, change of variables
vector fields

Discussed problems 5 (partial derivatives, gradient, tangent plane and approximation formula), 6 (chain rule), 11 (triple integrals, spherical coordinates), 12 (general changes of variables) from the study guide.

Recall for general changes of variables: $u=u(x, y), v=v(x, y)$. The Jacobian is $J=\frac{\partial(u, v)}{\partial(x, y)} \stackrel{\text { def }}{=}$ $\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|$. Then $d u d v=|J| d x d y=\left|\frac{\partial(u, v)}{\partial(x, y)}\right| d x d y$ (absolute value because area is the absolute value of the determinant).

MATH 20E Lecture 11 - Wednesday, April 24, 2013: first midterm

MATH 20E Lecture 12 - Friday, April 26, 2013

Path integrals

Let $\vec{c}(t)$ be a path in n-dimensional space and f a function of n variables. We can integrate f along \vec{c} and compute

$$
\int_{\vec{c}} f d s .
$$

Here $d s$ stands for the arc length element as we have to cut the curve c into small pieces and measure their length. In 2 variables, this means computing the area of a fence that follows the path $\vec{c}(t)$ and at every point has height equal to $f(\vec{c}(t))$. (Picture drawn).

To evaluate: $d s=\left\|\vec{c}^{\prime}(t)\right\| d t$ since $\left\|\vec{c}^{\prime}(t)\right\|$ is the speed of a particle moving on c and distance $=$ speed • time. So

$$
\int_{\vec{c}} f d s=\int_{a}^{b} f(\vec{c}(t))\left\|\vec{c}^{\prime}(t)\right\| d t
$$

Example (3 variables): $f(x, y, z)=x+y+z$ and $\vec{c}(t)=(\cos t, \sin t, t)$ with $0 \leq t \leq 2 \pi$ (helix). Then $\vec{c}^{\prime}(t)=(-\sin t, \cos t, 1)$ and $\left\|\vec{c}^{\prime}(t)\right\|=\sqrt{(-\sin t)^{2}+(\cos t)^{2}+1^{2}}=\sqrt{2}$.

$$
\int_{\vec{c}} f d s=\int_{0}^{2 \pi} f(\cos t, \sin t, t) \sqrt{2} d t=\sqrt{2} \int_{0}^{2 \pi}(\cos t+\sin t+t) d t=\sqrt{2}\left[\sin t-\cos t+\frac{t^{2}}{2}\right]_{t=0}^{t=2 \pi}=2 \sqrt{2} \pi
$$

Work and line integrals

$W=($ force $) \cdot($ distance $)=\vec{F} \cdot \Delta \vec{r}$ for a small motion $\Delta \vec{r}$. Total work is obtained by summing these along a trajectory C : get a "line integral"

$$
W=\int_{C} \vec{F} \cdot d \vec{r}\left(=\lim _{\Delta \vec{r} \rightarrow 0} \sum_{i} \vec{F} \cdot \Delta \vec{r}_{i}\right) .
$$

To evaluate the line integral, we observe C is parametrized by time t, with $a \leq t \leq b$ and give meaning to the notation $\int_{C} \vec{F} \cdot d \vec{r}$ by

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b}\left(\vec{F} \cdot \frac{d \vec{r}}{d t}\right) d t .
$$

Example: $\vec{F}=-y \hat{\mathbf{1}}+x \hat{\mathbf{j}}$ and C is given by $x=t, y=t^{2}, 0 \leq t \leq 1$ (portion of parabola $y=x^{2}$ from $(0,0)$ to $(1,1))$. Then we substitute expressions in terms of t everywhere:

$$
\vec{F}=(-y, x)=\left(-t^{2}, t\right), \frac{d \vec{r}}{d t}=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)=(1,2 t)
$$

so $\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{1} \vec{F} \cdot \frac{d \vec{r}}{d t} d t=\int_{0}^{1}\left(-t^{2}, t\right) \cdot(1,2 t) d t=\int_{0}^{1} t^{2} d t=\frac{1}{3}$. (In the end things always reduce to a one-variable integral.)

New notation for line integral: $\vec{F}=(M, N)$, and $d \vec{r}=(d x, d y)$ (this is in fact a differential: if we divide both sides by $d t$ we get the component formula for the velocity $d \vec{r} / d t$). So the line integral becomes

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} M d x+N d y .
$$

The notation is dangerous: this is not a sum of integrals w.r.t. x and y, but really a line integral along C. To evaluate one must express everything in terms of the chosen parameter.

In the above example, we have $x=t, y=t^{2}$, so $d x=d t, d y=2 t d t$; then

$$
\int_{C}-y d x+x d y=\int_{0}^{1}-t^{2} d t+t(2 t d t)=\int_{0}^{1} t^{2} d t=\frac{1}{3}
$$

(same calculation as before, using different notation).
In fact, the definition of the line integral does not involve the parametrization: so the result is the same no matter which parametrization we choose. For example we could choose to parametrize the parabola by $x=\sin \theta, y=\sin ^{2} \theta, 0 \leq \theta \leq \pi / 2$. Then we'd get $\int_{C} \vec{F} \cdot d \vec{r}=\int_{0}^{\pi / 2} \ldots d \theta$ would be equivalent to the previous one under the substitution $t=\sin \theta$ and would again be equal to $1 / 3$. In practice we always choose the simplest parametrization!

