MATH 20E Lecture 13 - Monday, April 29, 2013

Work in $3 D$:

situation is similar to the one in the plane Given a vector field $\vec{F}=P \hat{\mathbf{1}}+Q \hat{\mathbf{j}}+R \hat{\mathbf{k}}=(P, Q, R)$ where P, Q, R are functions of x, y, z and a trajectory C in space we need to compute the work done by the vector field along C. This is given by the line integral

$$
W=\int_{C} \vec{F} \cdot d \vec{r}=\int_{C}\left(\vec{F} \cdot \frac{d \vec{r}}{d t}\right) d t
$$

In coordinates: think of $d \vec{r}=(d x, d y, d z)$ and the line integral becomes

$$
W=\int_{C} P d x+Q d y+R d z
$$

Example: $\vec{F}=(y z, x z, x y)$ and $C: x=t^{3}, y=t^{2}, z=t$ for $0 \leq t \leq 1$. Then $d x=3 t^{2} d t, d y=$ $2 t d t, d z=d t$ and substitute:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} y z d x+x z d y+x y d z=\int_{0}^{1} 6 t^{5} d t=1 .
$$

(In general, express (x, y, z) in terms of a single parameter: 1 degree of freedom)

Geometric approach

Recall on trajectory C, velocity is $\frac{d \vec{r}}{d t}=\frac{d s}{d t} \hat{\mathbf{T}}$ where $s=\operatorname{arclength,~} \hat{\mathbf{T}}=$ unit tangent vector to trajectory, $\frac{d s}{d t}=$ speed. So $d \vec{r}=\hat{\mathbf{T}} d s$ and

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot \hat{\mathbf{T}} d s
$$

Sometimes the calculation is easier this way!
Example: $C=$ circle of radius a centered at origin; $\vec{F}=x \hat{\mathbf{i}}+y \hat{\mathbf{J}}$ (points radially out). Then $\vec{F} \cdot \hat{\mathbf{T}}=0$ because they are perpendicular (picture drawn), so $\int_{C} \vec{F} \cdot \hat{\mathbf{T}} d s=\int_{C} 0 d s=0$.

Example: same $C ; \vec{F}=-y \hat{\mathbf{1}}+x \hat{\mathbf{\jmath}}$ then \vec{F} points in the same direction as $\hat{\mathbf{T}}$ so $\vec{F} \cdot \hat{\mathbf{T}}=\|\vec{F}\|=a$. Get that

$$
\int_{C} \vec{F} \cdot \hat{\mathbf{T}} d s=\int_{C} a d s=a \int_{C} d s=a \cdot(\text { length of } C)=a(2 \pi a)=2 \pi a^{2} .
$$

We checked that we get the same answer if we compute using parametrization $x=a \cos \theta, y=$ $a \sin \theta$.

More complicated trajectories; orientation

Example: $\vec{F}=y \hat{\mathbf{1}}+x \hat{\mathbf{j}} ; C_{\vec{\prime}}=C_{1}+C_{2}+C_{3}$ enclosing sector of unit disk from 0 to $\pi / 4$ (picture shown). Then work $=\int_{C} \vec{F} \cdot d \vec{r}$ is the sum of the work on each of C_{1}, C_{2}, C_{3}. So we need to compute $\int_{C_{i}} y d x+x d y$ for $i=1,2,3$.

1) $C_{1}: x$-axis from $(0,0)$ to $(1,0)$. Can do $x=t, y=0, d x=d t, d y=0,0 \leq t \leq 1$. So
$\int_{C_{1}} y d x+x d y=\int_{0}^{1} 0 d t=0$.
Equivalently, geometrically: along x-axis, $y=0$ so $\vec{F}=x \hat{\mathbf{\jmath}}$ while $\hat{\mathbf{T}}=\hat{i}$ (perpendicular). Therefore $\int_{C_{1}} \vec{F} \cdot \hat{\mathbf{T}} d s=0$.
2) $C_{2}: x=\cos \theta, y=\sin \theta, 0 \leq \theta \leq \pi / 4$. Then $d x=-\sin \theta d \theta, d y=\cos \theta d \theta$. So

$$
\int_{C_{2}} y d x+x d y=\int_{0}^{\pi / 4} \sin \theta(-\sin \theta d \theta)+\cos \theta(\cos \theta d \theta)=\int_{0}^{p i / 4} \cos (2 \theta) d \theta=\left[\frac{1}{2} \sin 2 \theta\right]_{\theta=0}^{\theta=\pi / 4}=\frac{1}{2}
$$

3) $C_{3}=$ line segment from $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ to $(0,0)$: could take $x=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} t, y=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} t, 0 \leq t \leq 1$.

Easier: consider C_{3} backwards (denoted C_{3}^{-}) which is parametrized by $x=y=t$ with $0 \leq t \leq \frac{1}{\sqrt{2}}$. Work along C_{3}^{-}is opposite of work along C_{3}.

$$
\int_{C_{3}^{-}} y d x+x d y=\int_{0}^{1 / \sqrt{2}} t d t+t d t=\left[t^{2}\right]_{t=0}^{t=1 / \sqrt{2}}=\frac{1}{2} \Longrightarrow \int_{C_{3}} y d x+x d y=-\frac{1}{2} .
$$

Alternatively,

$$
\int_{C_{3}} y d x+x d y=\int_{1 / \sqrt{2}}^{0} t d t+t d t=\left[t^{2}\right]_{t=1 / \sqrt{2}}^{t=0}=-\frac{1}{2} .
$$

Total work $=\int_{C_{1}} y d x+x d y+\int_{C_{2}} y d x+x d y+\int_{C_{3}} y d x+x d y=0+\frac{1}{2}-\frac{1}{2}=0$.

MATH 20E Lecture 14 - Wednesday, May 1, 2013

Gradient fields

If \vec{F} is a gradient field (i.e. $\vec{F}=\nabla f$ for some potential f) then we can use the fundamental theorem of calculus for line integrals:

$$
\int_{C} \nabla f \cdot d \vec{r}=f\left(P_{1}\right)-f\left(P_{0}\right) \text { when } C \text { runs from } P_{0} \text { to } P_{1}
$$

Physical interpretation: the work done by a gradient field is given by the change in potential.
Proof (in 2 variables, but works in however many):
$\int_{C} \nabla f \cdot d \vec{r}=\int_{t_{0}}^{t_{1}}\left(f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}\right) d t=\int_{t_{0}}^{t_{1}} \frac{d}{d t}(f(x(t), y(t))) d t=[f(x(t), y(t))]_{t=t_{0}}^{t=t_{1}}=f\left(P_{1}\right)-f\left(P_{0}\right)$.
For instance, in the last example from Monday's lecture, we had $\vec{F}=(y, x)=\nabla f$ where $f(x, y)=x y$. (picture shown of C, \vec{F} and level curves). We could compute $\int_{C_{i}}$ just by evaluating $f=x y$ at end points. Total work is 0 because we end where we started.

Consequences:

for a gradient field, we have:

- Path independence: if C_{1}, C_{2} have same endpoints then $\int_{C_{1}} \nabla f \cdot d \vec{r}=\int_{C_{2}} \nabla f \cdot d \vec{r}$ (both equal to $f\left(P_{1}\right)-f\left(P_{0}\right)$ by the theorem). So the line integral $\int_{C} \nabla f \cdot d \vec{r}$ depends only on the end points, not on the actual trajectory.
- Conservativeness: if C is a closed loop then $\int_{C} \nabla f \cdot d \vec{r}=0(=f(P) ? f(P))$. (e.g. in above example, $\int_{C}=0+1 / 2-1 / 2=0$.)

WARNING: this is only for gradient fields!

Example: $\vec{F}=-y \hat{\mathbf{\imath}}+x \hat{\mathbf{\jmath}}$ is not a gradient field: as seen Monday, along $C=$ circle of radius a counterclockwise (\vec{F} is parallel to $\hat{\mathbf{T}}$), $\int_{C} \vec{F} \cdot d \vec{r}=2 \pi a^{2}$. Hence \vec{F} is not conservative, and not a gradient field.

Physical interpretation

If the force field \vec{F} is the gradient of a potential f, then work of $\vec{F}=$ change in value of potential. E.g.: 1) $\vec{F}=$ gravitational field, $f=$ gravitational potential; 2) $\vec{F}=$ electrical field; $f=$ electrical potential (voltage). (Actually physicists use the opposite sign convention, $\vec{F}=-\nabla f$). Conservativeness means that energy comes from change in potential f, so no energy can be extracted from motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic energy equals the work of the force equals the change in potential energy).

Note: path independence is equivalent to conservativeness by considering C_{1}, C_{2} with same endpoints, $C=C_{1}+C_{2}^{-}$is a closed loop.

Surfaces in \mathbb{R}^{3}

1) Surface S is the graph of some function $z=f(x, y)$ over a region R of $x y$-plane: tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$ to S where $z_{0}=f\left(x_{0}, y_{0}\right)$ is given by

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=z-z_{0} \text { where } a=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \text { and } b=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) .
$$

Example: cannot remember what example I picked.
2) Surface S is given by the implicit equation $f(x, y, z)=c$ where c is a constant. We can think of this as the level surface $f=c$. The gradient vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$. Equation of the plane is
$\nabla f \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0 \Longleftrightarrow a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$ where $(a, b, c)=\nabla f\left(x_{0}, y_{0}, z_{0}\right)$.
Example: tangent plane to hyperboloid $x^{2}+y^{2}-z^{2}=4$ (picture drawn) at ($2,1,1$) : gradient is $(2 x, 2 y,-2 z)=(4,2,-2)$; tangent plane is $4 x+2 y-2 z=8$. (Here we could also solve for $z= \pm \sqrt{x^{2}+y^{2}-4}$ and use linear approximation formula, but in general we can't.)
3) We can describe S by parametric equations $x=x(u, v), y=y(u, v), z=z(u, v)$ (i.e. $\vec{r}=$ $\vec{r}(u, v))$. Then we call the function $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ a parametrization of the surface S. Then by fixing $u=u_{0}$ and allowing v to vary we get a curve $C_{1}: v \mapsto \Phi\left(u_{0}, v\right)$ that is contained in the surface S. Thus the tangent vector Φ_{v} to C_{1} is tangent to S; it is contained in the tangent plane to S. Similarly Φ_{u} is also in the tangent plane.

MATH 20E Lecture 15 - Friday, May 3, 2013

Tangent planes to parametric surfaces continued

Last time: S by parametric equations $x=x(u, v), y=y(u, v), z=z(u, v)$ and $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ with $(u, v) \in R$ some region of the $u v$-plane. Fix a point $\left(x_{0}, y_{0}, z_{0}\right)=\Phi\left(u_{0}, v_{0}\right)$. We have seen that $\Phi_{u}\left(u_{0}, v_{0}\right)$ and $\Phi_{v}\left(u_{0}, v_{0}\right)$ are both tangent vectors to S. Therefore the tangent plane is the plane determined by these two vectors, so it has normal vector given by their cross product $\Phi_{u} \times \Phi_{v}$.

Example: S is parametrized by $x=u \cos v, y=u \sin v, z=u^{2}+v^{2}$. Find the tangent plane at $\left(u_{0}, v_{0}\right)=(1,0)$.

We have $\left(x_{0}, y_{0}, z_{0}\right)=(1,0,1)$ is the point on S. The partial derivative vectors are $\Phi_{u}=$ $\left(x_{u}, y_{u}, z_{u}\right)=(\cos v, \sin v, 2 u)$ and $\Phi_{v}=(-u \sin v, u \cos v, 2 v)$. At (1,0) they become $\Phi_{u}=(1,0,2)$ and $\Phi_{v}=(0,1,0)$. The normal vector is

$$
\Phi_{u} \times \Phi_{v}=(1,0,2) \times(0,1,0)=\left|\begin{array}{ccc}
\hat{\mathbf{1}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\
1 & 0 & 2 \\
0 & 1 & 0
\end{array}\right|=\left|\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \hat{\mathbf{k}}=-2 \hat{\mathbf{i}}+\hat{\mathbf{k}}=(-2,0,1) .
$$

The tangent plane is the plane with normal vector $\Phi_{u} \times \Phi_{v}=(-2,0,1)$ that passes through the point $\left(x_{0}, y_{0}, z_{0}\right)=(1,0,1)$, i.e. $-2(x-1)+(z-1)=0$. Equation becomes $-2 x+z+1=0$.

Note: the normal vector $\Phi_{u} \times \Phi_{v}$ is given by

$$
\Phi_{u} \times \Phi_{v}=\left|\begin{array}{ccc}
\hat{\mathbf{l}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \tag{1}\\
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v}
\end{array}\right|=\left|\begin{array}{cc}
y_{u} & z_{u} \\
y_{v} & z_{v}
\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{cc}
x_{u} & z_{u} \\
x_{v} & z_{v}
\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{ll}
x_{u} & y_{u} \\
x_{v} & y_{v}
\end{array}\right| \hat{\mathbf{k}}=\frac{\partial(y, z)}{\partial(u, v)} \hat{\mathbf{l}}-\frac{\partial(x, z)}{\partial(u, v)} \hat{\mathbf{l}}+\frac{\partial(x, y)}{\partial(u, v)} \hat{\mathbf{k}}
$$

Surface area

area of a surface is given by $\iint_{\text {surface }} d S$ where $d S$ is the surface area element.

1) Parametric surface $S: x=x(u, v), y=y(u, v), z=z(u, v)$ with $(u, v) \in R$ some region of the $u v$-plane.

Consider portion of S that is the image via Φ of a small rectangle $\Delta u \Delta v$ in $u v$-plane. In linear approximation it is a parallelogram (picture shown). The sides of the parallelogram are the vectors $\Phi_{u} \Delta u$ and $\Phi_{v} \Delta v$. The are of the parallelogram is given by the length/norm of the cross product of the two vectors. That is,

$$
\Delta S=\left\|\left(\Phi_{u} \Delta u\right) \times\left(\Phi_{v} \Delta v\right)\right\|=\left\|\Phi_{u} \times \Phi_{v}\right\| \Delta u \Delta v
$$

and therefore $d S=\left\|\Phi_{u} \times \Phi_{v}\right\| d u d v$. Thus

$$
\operatorname{area}(S)=\iint_{R}\left\|\Phi_{u} \times \Phi_{v}\right\| d u d v
$$

Since $\Phi_{u} \times \Phi_{v}$ is given by (1), we can compute its norm and get

$$
\operatorname{area}(S)=\iint_{R} \sqrt{\left(\frac{\partial(y, z)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial(x, z)}{\partial(u, v)}\right)^{2}+\left(\frac{\partial(x, y)}{\partial(u, v)}\right)^{2}} d u d v
$$

Example: area of cone $z=\sqrt{x^{2}+y^{2}}$ with $0 \leq z \leq 1$. The shadow on $x y$-plane is the unit disk $x^{2}+y^{2} \leq 1$. Parametrize by $x=r \cos \theta, y=r \sin \theta, z=r, 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$. Then $\left(x_{r}, y_{r}, z_{r}\right)=(\cos \theta, \sin \theta, 1)$ and $\left(x_{\theta}, y_{\theta}, z_{\theta}\right)=(-r \cos \theta, r \sin \theta, 0)$ and their cross-product is
$\left|\begin{array}{ccc}\hat{\mathbf{\imath}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \cos \theta & \sin \theta & 1 \\ -r \cos \theta & r \sin \theta & 0\end{array}\right|=\left|\begin{array}{cc}\sin \theta & 1 \\ r \sin \theta & 0\end{array}\right| \hat{\mathbf{i}}-\left|\begin{array}{cc}\cos \theta & 1 \\ -r \cos \theta & 0\end{array}\right| \hat{\mathbf{j}}+\left|\begin{array}{cc}\cos \theta & \sin \theta \\ -r \cos \theta & r \sin \theta\end{array}\right| \hat{\mathbf{k}}=-r \sin \theta \hat{\mathbf{\imath}}-r \cos \theta \hat{\mathbf{j}}+r \hat{\mathbf{k}}$.
The norm is $r \sqrt{2}$ and the area of the cone is

$$
\int_{0}^{2 \pi} \int_{0}^{1} r \sqrt{2} d r d \theta=\pi \sqrt{2}
$$

2) The surface S is the graph of a function $f(x, y)$ with $(x, y) \in R$ some region of the $u v$-plane.

Then S has equation $z=f(x, y)$ and we can see this is as parametrized by $x=u, y=v, z=f(u, v)$. Then $\Phi_{u}=\left(1,0, f_{x}\right)$ and $\Phi_{v}=\left(0,1, f_{y}\right)$ and get $\Phi_{u} \times \Phi_{v}=\left(-f_{x},-f_{y}, 1\right)$. The area of the surface is then

$$
\operatorname{area}(S)=\iint_{R} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

Example: area of cone $z=\sqrt{x^{2}+y^{2}}$ with $0 \leq z \leq 1$. The shadow on $x y$-plane is the unit disk $x^{2}+y^{2} \leq 1$. The cone is therefore the graph of the function $f(x, y)=\sqrt{x^{2}+y^{2}}$ with $x^{2}+y^{2} \leq 1$.

The partial derivatives are $f_{x}=\frac{x}{\sqrt{x^{2}+y^{2}}}$ and $f_{y}=\frac{y}{\sqrt{x^{2}+y^{2}}}$ so $\sqrt{1+f_{x}^{2}+f_{y}^{2}}=\sqrt{2}$. The area of the graph is

$$
\iint_{x^{2}+y^{2} \leq 1} \sqrt{2} d x d y=\sqrt{2}(\text { area of the unit disk })=\pi \sqrt{2} .
$$

