MATH 20E Lecture 13 - Monday, April 29, 2013

Work in 3D:

situation is similar to the one in the plane Given a vector field $\vec{F} = P\hat{i} + Q\hat{j} + R\hat{k} = (P, Q, R)$ where P, Q, R are functions of x, y, z and a trajectory C in space we need to compute the work done by the vector field along C. This is given by the line integral

$$W = \int_C \vec{F} \cdot d\vec{r} = \int_C \left(\vec{F} \cdot \frac{d\vec{r}}{dt} \right) dt.$$

In coordinates: think of $d\vec{r} = (dx, dy, dz)$ and the line integral becomes

$$W = \int_C Pdx + Qdy + Rdz.$$

Example: $\vec{F} = (yz, xz, xy)$ and $C : x = t^3, y = t^2, z = t$ for $0 \le t \le 1$. Then $dx = 3t^2dt, dy = 2tdt, dz = dt$ and substitute:

$$\int_C \vec{F} \cdot d\vec{r} = \int_C yzdx + xzdy + xydz = \int_0^1 6t^5dt = 1$$

(In general, express (x, y, z) in terms of a single parameter: 1 degree of freedom)

Geometric approach

Recall on trajectory C, velocity is $\frac{d\vec{r}}{dt} = \frac{ds}{dt}\hat{\mathbf{T}}$ where s = arclength, $\hat{\mathbf{T}} = \text{unit tangent vector to trajectory}$, $\frac{ds}{dt} = \text{speed}$. So $d\vec{r} = \hat{\mathbf{T}}ds$ and

$$\int_C \vec{F} \cdot d\vec{r} = \int_C \vec{F} \cdot \hat{\mathbf{T}} ds.$$

Sometimes the calculation is easier this way!

Example: $C = \text{circle of radius } a \text{ centered at origin; } \vec{F} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} \text{ (points radially out). Then } \vec{F} \cdot \hat{\mathbf{T}} = 0$ because they are perpendicular (picture drawn), so $\int_C \vec{F} \cdot \hat{\mathbf{T}} ds = \int_C 0 ds = 0.$

Example: same C; $\vec{F} = -y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$ then \vec{F} points in the same direction as $\hat{\mathbf{T}}$ so $\vec{F} \cdot \hat{\mathbf{T}} = \|\vec{F}\| = a$. Get that

$$\int_C \vec{F} \cdot \hat{\mathbf{T}} ds = \int_C a ds = a \int_C ds = a \cdot (\text{length of } C) = a(2\pi a) = 2\pi a^2.$$

We checked that we get the same answer if we compute using parametrization $x = a \cos \theta$, $y = a \sin \theta$.

More complicated trajectories; orientation

Example: $\vec{F} = y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$; $C = C_1 + C_2 + C_3$ enclosing sector of unit disk from 0 to $\pi/4$ (picture shown). Then work $= \int_C \vec{F} \cdot d\vec{r}$ is the sum of the work on each of C_1, C_2, C_3 . So we need to compute $\int_{C_i} y dx + x dy$ for i = 1, 2, 3.

1) C_1 : x-axis from (0,0) to (1,0). Can do $x = t, y = 0, dx = dt, dy = 0, 0 \le t \le 1$. So

 $\int_{C_1} y dx + x dy = \int_0^1 0 dt = 0.$ Equivalently, geometrically: along x-axis, y = 0 so $\vec{F} = x \hat{\mathbf{j}}$ while $\hat{\mathbf{T}} = \hat{i}$ (perpendicular). Therefore $\int_{C_1} \vec{F} \cdot \hat{\mathbf{T}} ds = 0.$

2)
$$C_2: x = \cos \theta, y = \sin \theta, 0 \le \theta \le \pi/4$$
. Then $dx = -\sin \theta d\theta, dy = \cos \theta d\theta$. So

$$\int_{C_2} y dx + x dy = \int_0^{\pi/4} \sin \theta (-\sin \theta d\theta) + \cos \theta (\cos \theta d\theta) = \int_0^{pi/4} \cos(2\theta) d\theta = \left[\frac{1}{2} \sin 2\theta\right]_{\theta=0}^{\theta=\pi/4} = \frac{1}{2}.$$
3) $C_3 = \text{line segment from } \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \text{ to } (0,0) : \text{ could take } x = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}t, y = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}t, 0 \le t \le 1.$

Easier: consider C_3 backwards (denoted C_3^-) which is parametrized by x = y = t with $0 \le t \le \frac{1}{\sqrt{2}}$. Work along C_3^- is opposite of work along C_3 .

$$\int_{C_3^-} y dx + x dy = \int_0^{1/\sqrt{2}} t dt + t dt = \left[t^2\right]_{t=0}^{t=1/\sqrt{2}} = \frac{1}{2} \implies \int_{C_3} y dx + x dy = -\frac{1}{2}$$

Alternatively,

$$\int_{C_3} y dx + x dy = \int_{1/\sqrt{2}}^0 t dt + t dt = \left[t^2\right]_{t=1/\sqrt{2}}^{t=0} = -\frac{1}{2}.$$

Total work = $\int_{C_1} y dx + x dy + \int_{C_2} y dx + x dy + \int_{C_3} y dx + x dy = 0 + \frac{1}{2} - \frac{1}{2} = 0.$

MATH 20E Lecture 14 - Wednesday, May 1, 2013

Gradient fields

If \vec{F} is a gradient field (i.e. $\vec{F} = \nabla f$ for some potential f) then we can use the **fundamental** theorem of calculus for line integrals:

$$\int_C \nabla f \cdot d\vec{r} = f(P_1) - f(P_0) \text{ when } C \text{ runs from } P_0 \text{ to } P_1.$$

Physical interpretation: the work done by a gradient field is given by the change in potential.

Proof (in 2 variables, but works in however many):

$$\int_C \nabla f \cdot d\vec{r} = \int_{t_0}^{t_1} \left(f_x \frac{dx}{dt} + f_y \frac{dy}{dt} \right) dt = \int_{t_0}^{t_1} \frac{d}{dt} \left(f(x(t), y(t)) \right) dt = \left[f(x(t), y(t)) \right]_{t=t_0}^{t=t_1} = f(P_1) - f(P_0).$$

For instance, in the last example from Monday's lecture, we had $\vec{F} = (y, x) = \nabla f$ where f(x, y) = xy. (picture shown of C, \vec{F} and level curves). We could compute \int_{C_i} just by evaluating f = xy at end points. Total work is 0 because we end where we started.

Consequences:

for a gradient field, we have:

- Path independence: if C_1, C_2 have same endpoints then $\int_{C_1} \nabla f \cdot d\vec{r} = \int_{C_2} \nabla f \cdot d\vec{r}$ (both equal to $f(P_1) f(P_0)$ by the theorem). So the line integral $\int_C \nabla f \cdot d\vec{r}$ depends only on the end points, not on the actual trajectory.
- Conservativeness: if C is a closed loop then $\int_C \nabla f \cdot d\vec{r} = 0 (= f(P)?f(P))$. (e.g. in above example, $\int_C = 0 + 1/2 1/2 = 0$.)

WARNING: this is only for gradient fields!

Example: $\vec{F} = -y\hat{\mathbf{i}} + x\hat{\mathbf{j}}$ is not a gradient field: as seen Monday, along C = circle of radius a counterclockwise (\vec{F} is parallel to $\hat{\mathbf{T}}$), $\int_C \vec{F} \cdot d\vec{r} = 2\pi a^2$. Hence \vec{F} is not conservative, and not a gradient field.

Physical interpretation

If the force field \vec{F} is the gradient of a potential f, then work of \vec{F} = change in value of potential. E.g.: 1) \vec{F} = gravitational field, f = gravitational potential; 2) \vec{F} = electrical field; f = electrical potential (voltage). (Actually physicists use the opposite sign convention, $\vec{F} = -\nabla f$). Conservativeness means that energy comes from change in potential f, so no energy can be extracted from motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic energy equals the work of the force equals the change in potential energy).

Note: path independence is equivalent to conservativeness by considering C_1, C_2 with same endpoints, $C = C_1 + C_2^-$ is a closed loop.

Surfaces in \mathbb{R}^3

1) Surface S is the graph of some function z = f(x, y) over a region R of xy-plane: tangent plane at (x_0, y_0, z_0) to S where $z_0 = f(x_0, y_0)$ is given by

$$a(x-x_0) + b(y-y_0) = z - z_0$$
 where $a = \frac{\partial f}{\partial x}(x_0, y_0)$ and $b = \frac{\partial f}{\partial y}(x_0, y_0)$.

Example: cannot remember what example I picked.

2) Surface S is given by the implicit equation f(x, y, z) = c where c is a constant. We can think of this as the level surface f = c. The gradient vector $\nabla f(x_0, y_0, z_0)$ is normal to the tangent plane at (x_0, y_0, z_0) . Equation of the plane is

$$\nabla f \cdot (x - x_0, y - y_0, z - z_0) = 0 \iff a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \text{ where } (a, b, c) = \nabla f(x_0, y_0, z_0).$$

Example: tangent plane to hyperboloid $x^2 + y^2 - z^2 = 4$ (picture drawn) at (2, 1, 1): gradient is (2x, 2y, -2z) = (4, 2, -2); tangent plane is 4x + 2y - 2z = 8. (Here we could also solve for $z = \pm \sqrt{x^2 + y^2 - 4}$ and use linear approximation formula, but in general we can't.)

3) We can describe S by parametric equations x = x(u, v), y = y(u, v), z = z(u, v) (i.e. $\vec{r} = \vec{r}(u, v)$). Then we call the function $\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$ a **parametrization** of the surface S. Then by fixing $u = u_0$ and allowing v to vary we get a curve $C_1 : v \mapsto \Phi(u_0, v)$ that is contained in the surface S. Thus the tangent vector Φ_v to C_1 is tangent to S; it is contained in the tangent plane to S. Similarly Φ_u is also in the tangent plane.

MATH 20E Lecture 15 - Friday, May 3, 2013

Tangent planes to parametric surfaces continued

Last time: S by parametric equations x = x(u, v), y = y(u, v), z = z(u, v) and $\Phi(u, v) = (x(u, v), y(u, v), z(u, v))$ with $(u, v) \in R$ some region of the *uv*-plane. Fix a point $(x_0, y_0, z_0) = \Phi(u_0, v_0)$. We have seen that $\Phi_u(u_0, v_0)$ and $\Phi_v(u_0, v_0)$ are both tangent vectors to S. Therefore the tangent plane is the plane determined by these two vectors, so it has normal vector given by their cross product $\Phi_u \times \Phi_v$.

Example: S is parametrized by $x = u \cos v$, $y = u \sin v$, $z = u^2 + v^2$. Find the tangent plane at $(u_0, v_0) = (1, 0)$.

We have $(x_0, y_0, z_0) = (1, 0, 1)$ is the point on S. The partial derivative vectors are $\Phi_u = (x_u, y_u, z_u) = (\cos v, \sin v, 2u)$ and $\Phi_v = (-u \sin v, u \cos v, 2v)$. At (1, 0) they become $\Phi_u = (1, 0, 2)$ and $\Phi_v = (0, 1, 0)$. The normal vector is

$$\Phi_u \times \Phi_v = (1,0,2) \times (0,1,0) = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} \hat{\mathbf{i}} - \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \hat{\mathbf{k}} = -2\hat{\mathbf{i}} + \hat{\mathbf{k}} = (-2,0,1).$$

The tangent plane is the plane with normal vector $\Phi_u \times \Phi_v = (-2, 0, 1)$ that passes through the point $(x_0, y_0, z_0) = (1, 0, 1)$, i.e. -2(x - 1) + (z - 1) = 0. Equation becomes -2x + z + 1 = 0.

Note: the normal vector $\Phi_u \times \Phi_v$ is given by

$$\Phi_{u} \times \Phi_{v} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k} \\ x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v} \end{vmatrix} = \begin{vmatrix} y_{u} & z_{u} \\ y_{v} & z_{v} \end{vmatrix} \hat{\mathbf{i}} - \begin{vmatrix} x_{u} & z_{u} \\ x_{v} & z_{v} \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} x_{u} & y_{u} \\ x_{v} & y_{v} \end{vmatrix} \hat{\mathbf{k}} = \frac{\partial(y, z)}{\partial(u, v)} \hat{\mathbf{i}} - \frac{\partial(x, z)}{\partial(u, v)} \hat{\mathbf{k}} + \frac{\partial(x, y)}{\partial(u, v)} \hat{\mathbf{k}}$$
(1)

Surface area

area of a surface is given by $\iint_{\text{surface}} dS$ where dS is the surface area element.

1) Parametric surface S: x = x(u, v), y = y(u, v), z = z(u, v) with $(u, v) \in R$ some region of the uv-plane.

Consider portion of S that is the image via Φ of a small rectangle $\Delta u \Delta v$ in *uv*-plane. In linear approximation it is a parallelogram (picture shown). The sides of the parallelogram are the vectors $\Phi_u \Delta u$ and $\Phi_v \Delta v$. The are of the parallelogram is given by the length/norm of the cross product of the two vectors. That is,

$$\Delta S = \|(\Phi_u \Delta u) \times (\Phi_v \Delta v)\| = \|\Phi_u \times \Phi_v\|\Delta u \Delta v$$

and therefore $dS = \|\Phi_u \times \Phi_v\| du dv$. Thus

area(S) =
$$\iint_R \|\Phi_u \times \Phi_v\| du dv.$$

Since $\Phi_u \times \Phi_v$ is given by (1), we can compute its norm and get

$$\operatorname{area}(S) = \iint_R \sqrt{\left(\frac{\partial(y,z)}{\partial(u,v)}\right)^2 + \left(\frac{\partial(x,z)}{\partial(u,v)}\right)^2 + \left(\frac{\partial(x,y)}{\partial(u,v)}\right)^2} \, dudv.$$

Example: area of cone $z = \sqrt{x^2 + y^2}$ with $0 \le z \le 1$. The shadow on *xy*-plane is the unit disk $x^2 + y^2 \le 1$. Parametrize by $x = r \cos \theta$, $y = r \sin \theta$, $z = r, 0 \le r \le 1, 0 \le \theta \le 2\pi$. Then $(x_r, y_r, z_r) = (\cos \theta, \sin \theta, 1)$ and $(x_\theta, y_\theta, z_\theta) = (-r \cos \theta, r \sin \theta, 0)$ and their cross-product is

$$\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \mathbf{k} \\ \cos\theta & \sin\theta & 1 \\ -r\cos\theta & r\sin\theta & 0 \end{vmatrix} = \begin{vmatrix} \sin\theta & 1 \\ r\sin\theta & 0 \end{vmatrix} \hat{\mathbf{i}} - \begin{vmatrix} \cos\theta & 1 \\ -r\cos\theta & 0 \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} \cos\theta & \sin\theta \\ -r\cos\theta & r\sin\theta \end{vmatrix} \hat{\mathbf{k}} = -r\sin\theta\hat{\mathbf{i}} - r\cos\theta\hat{\mathbf{j}} + r\hat{\mathbf{k}}.$$

The norm is $r\sqrt{2}$ and the area of the cone is

$$\int_0^{2\pi} \int_0^1 r\sqrt{2} dr d\theta = \pi\sqrt{2}$$

2) The surface S is the graph of a function f(x, y) with $(x, y) \in R$ some region of the uv-plane.

Then S has equation z = f(x, y) and we can see this is as parametrized by x = u, y = v, z = f(u, v). Then $\Phi_u = (1, 0, f_x)$ and $\Phi_v = (0, 1, f_y)$ and get $\Phi_u \times \Phi_v = (-f_x, -f_y, 1)$. The area of the surface is then

$$\operatorname{area}(S) = \iint_R \sqrt{1 + f_x^2 + f_y^2} \, dx dy.$$

Example: area of cone $z = \sqrt{x^2 + y^2}$ with $0 \le z \le 1$. The shadow on xy-plane is the unit disk $x^2 + y^2 \le 1$. The cone is therefore the graph of the function $f(x, y) = \sqrt{x^2 + y^2}$ with $x^2 + y^2 \le 1$.

The partial derivatives are $f_x = \frac{x}{\sqrt{x^2+y^2}}$ and $f_y = \frac{y}{\sqrt{x^2+y^2}}$ so $\sqrt{1+f_x^2+f_y^2} = \sqrt{2}$. The area of the graph is

$$\iint_{x^2+y^2 \le 1} \sqrt{2} dx dy = \sqrt{2} (\text{area of the unit disk}) = \pi \sqrt{2}.$$