
MATH 20E Lecture 13 - Monday, April 29, 2013

Work in 3D:

situation is similar to the one in the plane Given a vector field ~F = P ı̂+Q̂+Rk̂ = (P,Q,R) where
P,Q,R are functions of x, y, z and a trajectory C in space we need to compute the work done by
the vector field along C. This is given by the line integral

W =

∫
C

~F · d~r =

∫
C

(
~F · d~r

dt

)
dt.

In coordinates: think of d~r = (dx, dy, dz) and the line integral becomes

W =

∫
C
Pdx+Qdy +Rdz.

Example: ~F = (yz, xz, xy) and C : x = t3, y = t2, z = t for 0 ≤ t ≤ 1. Then dx = 3t2dt, dy =
2tdt, dz = dt and substitute:∫

C

~F · d~r =

∫
C
yzdx+ xzdy + xydz =

∫ 1

0
6t5dt = 1.

(In general, express (x, y, z) in terms of a single parameter: 1 degree of freedom)

Geometric approach

Recall on trajectory C, velocity is
d~r

dt
=

ds

dt
T̂ where s = arclength, T̂= unit tangent vector to

trajectory, ds
dt = speed. So d~r = T̂ds and∫

C

~F · d~r =

∫
C

~F · T̂ds.

Sometimes the calculation is easier this way!
Example: C = circle of radius a centered at origin; ~F = x̂ı + ŷ (points radially out). Then

~F · T̂ = 0 because they are perpendicular (picture drawn), so
∫
C
~F · T̂ds =

∫
C 0ds = 0.

Example: same C; ~F = −yı̂ + x̂ then ~F points in the same direction as T̂ so ~F · T̂ = ‖~F‖ = a.
Get that ∫

C

~F · T̂ds =

∫
C
ads = a

∫
C
ds = a · (length of C) = a(2πa) = 2πa2.

We checked that we get the same answer if we compute using parametrization x = a cos θ, y =
a sin θ.

More complicated trajectories; orientation

Example: ~F = yı̂ + x̂; C = C1 + C2 + C3 enclosing sector of unit disk from 0 to π/4 (picture
shown). Then work =

∫
C
~F ·d~r is the sum of the work on each of C1, C2, C3. So we need to compute∫

Ci
ydx+ xdy for i = 1, 2, 3.

1) C1 : x-axis from (0, 0) to (1, 0). Can do x = t, y = 0, dx = dt, dy = 0, 0 ≤ t ≤ 1. So
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∫
C1
ydx+ xdy =

∫ 1
0 0dt = 0.

Equivalently, geometrically: along x-axis, y = 0 so ~F = x̂ while T̂ = î (perpendicular). Therefore∫
C1

~F · T̂ds = 0.

2) C2 : x = cos θ, y = sin θ, 0 ≤ θ ≤ π/4. Then dx = − sin θdθ, dy = cos θdθ. So∫
C2

ydx+ xdy =

∫ π/4

0
sin θ(− sin θdθ) + cos θ(cos θdθ) =

∫ pi/4

0
cos(2θ)dθ =

[
1

2
sin 2θ

]θ=π/4
θ=0

=
1

2
.

3) C3 = line segment from
(

1√
2
, 1√

2

)
to (0, 0) : could take x = 1√

2
− 1√

2
t, y = 1√

2
− 1√

2
t, 0 ≤ t ≤ 1.

Easier: consider C3 backwards ( denoted C−3 ) which is parametrized by x = y = t with 0 ≤ t ≤ 1√
2
.

Work along C−3 is opposite of work along C3.∫
C−

3

ydx+ xdy =

∫ 1/
√
2

0
tdt+ tdt =

[
t2
]t=1/

√
2

t=0
=

1

2
=⇒

∫
C3

ydx+ xdy = −1

2
.

Alternatively, ∫
C3

ydx+ xdy =

∫ 0

1/
√
2
tdt+ tdt =

[
t2
]t=0

t=1/
√
2

= −1

2
.

Total work =
∫
C1
ydx+ xdy +

∫
C2
ydx+ xdy +

∫
C3
ydx+ xdy = 0 + 1

2 −
1
2 = 0.
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Gradient fields

If ~F is a gradient field (i.e. ~F = ∇f for some potential f) then we can use the fundamental
theorem of calculus for line integrals:∫

C
∇f · d~r = f(P1)− f(P0) when C runs from P0 to P1.

Physical interpretation: the work done by a gradient field is given by the change in potential.
Proof (in 2 variables, but works in however many):∫

C
∇f ·d~r =

∫ t1

t0

(
fx
dx

dt
+ fy

dy

dt

)
dt =

∫ t1

t0

d

dt
(f(x(t), y(t))) dt = [f(x(t), y(t))]t=t1t=t0

= f(P1)−f(P0).

For instance, in the last example from Monday’s lecture, we had ~F = (y, x) = ∇f where
f(x, y) = xy. (picture shown of C, ~F and level curves). We could compute

∫
Ci

just by evaluating
f = xy at end points. Total work is 0 because we end where we started.
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Consequences:

for a gradient field, we have:

• Path independence: if C1, C2 have same endpoints then
∫
C1
∇f · d~r =

∫
C2
∇f · d~r (both equal

to f(P1) − f(P0) by the theorem). So the line integral
∫
C ∇f · d~r depends only on the end

points, not on the actual trajectory.

• Conservativeness: if C is a closed loop then
∫
C ∇f · d~r = 0(= f(P )?f(P )). (e.g. in above

example,
∫
C = 0 + 1/2− 1/2 = 0.)

WARNING: this is only for gradient fields!
Example: ~F = −yı̂ + x̂ is not a gradient field: as seen Monday, along C = circle of radius a

counterclockwise (~F is parallel to T̂),
∫
C
~F · d~r = 2πa2. Hence ~F is not conservative, and not a

gradient field.

Physical interpretation

If the force field ~F is the gradient of a potential f, then work of ~F = change in value of potential.
E.g.: 1) ~F = gravitational field, f = gravitational potential; 2) ~F = electrical field; f = electrical
potential (voltage). (Actually physicists use the opposite sign convention, ~F = −∇f). Conserva-
tiveness means that energy comes from change in potential f , so no energy can be extracted from
motion along a closed trajectory (conservativeness = conservation of energy: the change in kinetic
energy equals the work of the force equals the change in potential energy).

Note: path independence is equivalent to conservativeness by considering C1, C2 with same
endpoints, C = C1 + C−2 is a closed loop.

Surfaces in R3

1) Surface S is the graph of some function z = f(x, y) over a region R of xy-plane: tangent
plane at (x0, y0, z0) to S where z0 = f(x0, y0) is given by

a(x− x0) + b(y − y0) = z − z0 where a =
∂f

∂x
(x0, y0) and b =

∂f

∂y
(x0, y0).

Example: cannot remember what example I picked.

2) Surface S is given by the implicit equation f(x, y, z) = c where c is a constant. We can think
of this as the level surface f = c. The gradient vector ∇f(x0, y0, z0) is normal to the tangent
plane at (x0, y0, z0). Equation of the plane is

∇f ·(x−x0, y−y0, z−z0) = 0 ⇐⇒ a(x−x0)+b(y−y0)+c(z−z0) = 0 where (a, b, c) = ∇f(x0, y0, z0).

Example: tangent plane to hyperboloid x2 + y2 − z2 = 4 (picture drawn) at (2, 1, 1) : gradient
is (2x, 2y,−2z) = (4, 2,−2); tangent plane is 4x + 2y − 2z = 8. (Here we could also solve for
z = ±

√
x2 + y2 − 4 and use linear approximation formula, but in general we can’t.)
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3) We can describe S by parametric equations x = x(u, v), y = y(u, v), z = z(u, v) (i.e. ~r =
~r(u, v)). Then we call the function Φ(u, v) = (x(u, v), y(u, v), z(u, v)) a parametrization of
the surface S. Then by fixing u = u0 and allowing v to vary we get a curve C1 : v 7→ Φ(u0, v)
that is contained in the surface S. Thus the tangent vector Φv to C1 is tangent to S; it is
contained in the tangent plane to S. Similarly Φu is also in the tangent plane.
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Tangent planes to parametric surfaces continued

Last time: S by parametric equations x = x(u, v), y = y(u, v), z = z(u, v) and Φ(u, v) = (x(u, v), y(u, v), z(u, v))
with (u, v) ∈ R some region of the uv-plane. Fix a point (x0, y0, z0) = Φ(u0, v0). We have seen that
Φu(u0, v0) and Φv(u0, v0) are both tangent vectors to S. Therefore the tangent plane is the plane
determined by these two vectors, so it has normal vector given by their cross product Φu × Φv.

Example: S is parametrized by x = u cos v, y = u sin v, z = u2 + v2. Find the tangent plane at
(u0, v0) = (1, 0).

We have (x0, y0, z0) = (1, 0, 1) is the point on S. The partial derivative vectors are Φu =
(xu, yu, zu) = (cos v, sin v, 2u) and Φv = (−u sin v, u cos v, 2v). At (1, 0) they become Φu = (1, 0, 2)
and Φv = (0, 1, 0). The normal vector is

Φu × Φv = (1, 0, 2)× (0, 1, 0) =

∣∣∣∣∣∣
ı̂ ̂ k̂
1 0 2
0 1 0

∣∣∣∣∣∣ =

∣∣∣∣0 2
1 0

∣∣∣∣ ı̂− ∣∣∣∣1 2
0 0

∣∣∣∣ ̂ +

∣∣∣∣1 0
0 1

∣∣∣∣ k̂ = −2̂ı + k̂ = (−2, 0, 1).

The tangent plane is the plane with normal vector Φu × Φv = (−2, 0, 1) that passes through the
point (x0, y0, z0) = (1, 0, 1), i.e. −2(x− 1) + (z − 1) = 0. Equation becomes −2x+ z + 1 = 0.

Note: the normal vector Φu × Φv is given by

Φu×Φv =

∣∣∣∣∣∣
ı̂ ̂ k̂
xu yu zu
xv yv zv

∣∣∣∣∣∣ =

∣∣∣∣yu zu
yv zv

∣∣∣∣ ı̂− ∣∣∣∣xu zu
xv zv

∣∣∣∣ ̂ +

∣∣∣∣xu yu
xv yv

∣∣∣∣ k̂ =
∂(y, z)

∂(u, v)
ı̂− ∂(x, z)

∂(u, v)
ı̂ +

∂(x, y)

∂(u, v)
k̂ (1)

Surface area

area of a surface is given by
∫∫

surface dS where dS is the surface area element.

1) Parametric surface S : x = x(u, v), y = y(u, v), z = z(u, v) with (u, v) ∈ R some region of the
uv-plane.

Consider portion of S that is the image via Φ of a small rectangle ∆u∆v in uv-plane. In linear
approximation it is a parallelogram (picture shown). The sides of the parallelogram are the vectors
Φu∆u and Φv∆v. The are of the parallelogram is given by the length/norm of the cross product of
the two vectors. That is,

∆S = ‖(Φu∆u)× (Φv∆v)‖ = ‖Φu × Φv‖∆u∆v
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and therefore dS = ‖Φu × Φv‖dudv. Thus

area(S) =

∫∫
R
‖Φu × Φv‖dudv.

Since Φu × Φv is given by (1), we can compute its norm and get

area(S) =

∫∫
R

√(
∂(y, z)

∂(u, v)

)2

+

(
∂(x, z)

∂(u, v)

)2

+

(
∂(x, y)

∂(u, v)

)2

dudv.

Example: area of cone z =
√
x2 + y2 with 0 ≤ z ≤ 1. The shadow on xy-plane is the unit

disk x2 + y2 ≤ 1. Parametrize by x = r cos θ, y = r sin θ, z = r, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Then
(xr, yr, zr) = (cos θ, sin θ, 1) and (xθ, yθ, zθ) = (−r cos θ, r sin θ, 0) and their cross-product is∣∣∣∣∣∣

ı̂ ̂ k̂
cos θ sin θ 1
−r cos θ r sin θ 0

∣∣∣∣∣∣ =

∣∣∣∣ sin θ 1
r sin θ 0

∣∣∣∣ ı̂−∣∣∣∣ cos θ 1
−r cos θ 0

∣∣∣∣ ̂+

∣∣∣∣ cos θ sin θ
−r cos θ r sin θ

∣∣∣∣ k̂ = −r sin θı̂−r cos θ̂+rk̂.

The norm is r
√

2 and the area of the cone is∫ 2π

0

∫ 1

0
r
√

2drdθ = π
√

2.

2) The surface S is the graph of a function f(x, y) with (x, y) ∈ R some region of the uv-plane.

Then S has equation z = f(x, y) and we can see this is as parametrized by x = u, y = v, z = f(u, v).
Then Φu = (1, 0, fx) and Φv = (0, 1, fy) and get Φu × Φv = (−fx,−fy, 1). The area of the surface
is then

area(S) =

∫∫
R

√
1 + f2x + f2y dxdy.

Example: area of cone z =
√
x2 + y2 with 0 ≤ z ≤ 1. The shadow on xy-plane is the unit disk

x2 + y2 ≤ 1. The cone is therefore the graph of the function f(x, y) =
√
x2 + y2 with x2 + y2 ≤ 1.

The partial derivatives are fx = x√
x2+y2

and fy = y√
x2+y2

so
√

1 + f2x + f2y =
√

2. The area of

the graph is ∫∫
x2+y2≤1

√
2dxdy =

√
2(area of the unit disk) = π

√
2.

5


